
THE UNIVERSITY OF CHICAGO

COUPLED-CLUSTER RESPONSE THEORY: PARALLEL ALGORITHMS AND

NOVEL APPLICATIONS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

BY

JEFFREY RICHARD HAMMOND

CHICAGO, ILLINOIS

JUNE 2009



TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES viii

ABSTRACT xiii

ACKNOWLEDGEMENTS xiv

1 INTRODUCTION 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Omissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Unit conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 COUPLED-CLUSTER RESPONSE THEORY AND NWCHEM 11
2.1 Coupled-cluster theory . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The coupled-cluster energy equations . . . . . . . . . . . . . . 11
2.1.2 First derivatives of the energy . . . . . . . . . . . . . . . . . . 15
2.1.3 Second derivatives of the energy . . . . . . . . . . . . . . . . . 17
2.1.4 Third derivatives of the energy . . . . . . . . . . . . . . . . . 19
2.1.5 From energy derivatives to response theory . . . . . . . . . . . 20

2.2 NWChem and the Tensor Contraction Engine . . . . . . . . . . . . . 22
2.2.1 NWChem parallelism in non-technical language . . . . . . . . 24
2.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 DYNAMIC POLARIZABILITIES OF POLYAROMATIC HYDROCARBONS
USING COUPLED-CLUSTER LINEAR RESPONSE THEORY 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Theory and computational details . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Basis set convergence . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Importance of iterative triples . . . . . . . . . . . . . . . . . . 44
3.3.3 Geometry effects . . . . . . . . . . . . . . . . . . . . . . . . . 45

ii



iii

3.3.4 Comparison of density-functional and coupled-cluster polariz-
abilities for linear oligoacenes . . . . . . . . . . . . . . . . . . 49

3.3.5 Accuracy of frequency-dependent polarizabilities . . . . . . . . 52
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 COUPLED-CLUSTER CALCULATIONS FOR STATIC AND DYNAMIC
POLARIZABILITIES OF C60 64
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 BENCHMARK CALCULATIONS OF DFT FUNCTIONALS FOR THE BIND-
ING ENERGIES AND DIPOLE POLARIZABILITIES OF WATER CLUS-
TERS 72
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Benchmarking the monomer . . . . . . . . . . . . . . . . . . . 75
5.3.2 Benchmarking of small clusters . . . . . . . . . . . . . . . . . 78
5.3.3 Basis set evaluation for computing cluster polarizabilities . . . 80
5.3.4 Comparison of density-functionals for computing cluster polar-

izabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.5 Comparison of density-functionals for computing cluster bind-

ing energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 COUPLED-CLUSTER DYNAMIC POLARIZABILITIES INCLUDING TRIPLE
EXCITATIONS 100
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Theory and computational details . . . . . . . . . . . . . . . . . . . . 102
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 Ne and HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.2 N2 and CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.3 CN and NO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.4 O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



iv

7 LINEAR RESPONSE COUPLED-CLUSTER SINGLES AND DOUBLES AP-
PROACH WITH MODIFIED SPECTRAL RESOLUTION OF THE SIMI-
LARITY TRANSFORMED HAMILTONIAN 133
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3 Computational details and results . . . . . . . . . . . . . . . . . . . . 144

7.3.1 Static and dynamic polarizabilities for the N2 molecule . . . . 145
7.3.2 Polarizabilities for stretched internuclear geometries . . . . . . 152

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 C6 COEFFICIENTS FROM COUPLED-CLUSTER LINEAR RESPONSE
THEORY 163
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2.1 Response equations for a complex frequency . . . . . . . . . . 165
8.2.2 Response function for a complex frequency . . . . . . . . . . . 166
8.2.3 Derivation of the Casimir-Polder relation . . . . . . . . . . . . 168

8.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.3.1 Solution of Response Equations . . . . . . . . . . . . . . . . . 170
8.3.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . 171

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9 PARALLEL COMPUTATION OF COUPLED-CLUSTER HYPERPOLAR-
IZABILITIES 179
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.2 Theory and computational details . . . . . . . . . . . . . . . . . . . . 181
9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.3.1 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.2 Acetonitrile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.3.3 Chloroform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.3.4 para-Nitroaniline . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

10 CALCULATIONS OF MOLECULAR PROPERTIES IN HYBRID COUPLED-
CLUSTER AND MOLECULAR MECHANICS APPROACH 214
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217



v

10.2.1 Asymptotic extrapolation scheme . . . . . . . . . . . . . . . . 217
10.3 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11 AUTOMATIC TUNING OF MULTIDIMENSIONAL ARRAYS KERNELS
USED IN COUPLED-CLUSTER CALCULATIONS 238
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
11.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

11.3.1 Profiling of CCSD within NWChem . . . . . . . . . . . . . . . 242
11.3.2 Autotuning transpose kernels . . . . . . . . . . . . . . . . . . 244

11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

12 CONCLUSIONS 250

13 FINAL THOUGHTS 253
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A SUPPLEMENTAL INFORMATION FOR CHAPTER 6 259

B SUPPLEMENTAL INFORMATION FOR CHAPTER 9 267



LIST OF FIGURES

2.1 Procedure for computing a particular contraction. See text for details. 25

3.1 Convention for the tensor components of the polarizability. In both
cases the N component comes out of the plane of the page. . . . . . . 40

3.2 Numbering scheme for carbon atoms in (a) anthracene, (b) tetracene,
(c) pentacene, (d) hexacene. The presence of double bonds indicates
only that all carbons are sp2 hybridized. . . . . . . . . . . . . . . . . 47

5.1 Evaluation of Pople basis sets for water clusters (see text for details). 83
5.2 Evaluation of Sadlej basis sets for water clusters (see text for details). 84
5.3 Isotropic polarizabilities of water clusters at the CCSD/aug-cc-pVDZ

(frozen core) level of theory. . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Errors (with respect to CCSD) in the isotropic polarizability per molecule

for a number of density-functionals. . . . . . . . . . . . . . . . . . . . 87
5.5 Errors (with respect to CCSD) in the anisotropic polarizability per

molecule for a number of density-functionals. . . . . . . . . . . . . . . 88
5.6 Binding energy per molecule for the SCF, MP2, CCSD and CCSD(T)

methods with the aug-cc-pVDZ basis set. . . . . . . . . . . . . . . . . 90
5.7 Error (with respect to CCSD(T)) in the binding energy per molecule

for a number of density-functionals. . . . . . . . . . . . . . . . . . . . 91

6.1 The basis-set dependence of static polarizabilities of neon calculated
using CCSD, CC3 and CCSDT. The aug-cc-pVNZ (aug in the key)
and d-aug-cc-pVNZ (d-aug in the key) were employed. The nearly
horizontal line represents the d-aug-cc-pVNZ series. In both cases, the
method dependence is nominal compared to the basis set dependence. 110

6.2 Method and basis-set dependence of both the parallel and perpendic-
ular components of the static polarizability tensor of HF. CC3 and
CCSDT are indistinguishable for the perpendicular component. . . . 112

6.3 Frequency dependence of both the parallel and perpendicular compo-
nents of the polarizability of CO using the CCSD, CC3 and CCSDT
methods with the aug-cc-pVTZ basis set. . . . . . . . . . . . . . . . . 116

6.4 Basis-set dependence of both the parallel and perpendicular compo-
nents of the static polarizability of CO using the CCSD, CC3 and
CCSDT methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vi



vii

6.5 Basis-set dependence of both the parallel and perpendicular compo-
nents of the static polarizability of CN with CCSD and CCSDT. Only
the parallel component is sensitive to the method and basis set, and
much more so to the basis set than the method. . . . . . . . . . . . . 120

6.6 Basis-set dependence of both the parallel and perpendicular compo-
nents of the static polarizability of O2 with CCSD and CCSDT. . . . 122

7.1 Frequency dependent polarizability (α‖(ω)) for the N2 molecule in the

aug-cc-pVDZ basis set (see text for details). . . . . . . . . . . . . . . 146
7.2 Errors (with respect to CCSDT) in the static αZZ(0) polarizability for

the N2 molecule in the aug-cc-pVDZ basis set as a function of N-N
stretch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.1 Basis set convergence of the three unique tensor components composite
and parallel static hyperpolarizability of H2O. . . . . . . . . . . . . . 187

9.2 Basis set convergence of the three unique tensor components composite
and parallel static hyperpolarizability of CH3CN. . . . . . . . . . . . 191

9.3 Basis set convergence of the three unique tensor components composite
and parallel static hyperpolarizability of CHCl3. . . . . . . . . . . . . 197

10.1 Schematic representation of the Cl2O molecule in CCl4 solution. . . . 229



LIST OF TABLES

2.1 Line counts for various components of the NWChem CC code. The
equations in the text corresponding to each procedure are given. . . . 23

3.1 Timing data for parallel CCSD-LR calculations. All calculations were
performed using the Sadlej TZ basis set in D2h symmetry. The CCSD-
LR timings refers to the Z-axis and were taken from iteration 5 for all
cases. Timings are in seconds. . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Static dipole polarizabilities of Benzene calculated with CCSD and a
variety of basis sets. Energies and polarizabilities are given in atomic
units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Benzene dipole polarizabilities calculated with CCSD and CC3 and the
three small basis sets. Energies and polarizabilities are given in atomic
units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Geometry data for anthracene, tetracene, pentacene and hexacene. All
calculations were performed using the cc-pVTZ basis set. For MP2
only, the core orbitals were frozen. All bond lengths are given in
Angstroms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Benzene dipole polarizabilities calculated with the aug-cc-pVTZ basis
set and various methods. Polarizabilities and frequencies are given in
atomic units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Dipole polarizabilities of naphthalene for various levels of theory. Po-
larizabilities and frequencies are given in atomic units. . . . . . . . . 51

3.7 Dipole polarizabilities of anthracene for various levels of theory. Po-
larizabilities and frequencies are given in atomic units. . . . . . . . . 51

3.8 Static and dynamic polarizabilities of pentacene at different levels of
theory using the Sadlej TZ basis set. The αMM component of the
dynamic polarizability (in parentheses) is erroneous for the both PBE
and PBE0 since the frequency is greater than the first pole of the
response function in the corresponding symmetry. Polarizabilities and
frequencies are given in atomic units. . . . . . . . . . . . . . . . . . . 52

3.9 Static dipole polarizabilities of linear oligoacenes for n = 1 − 6. The
first set of data is the polarizability tensor components and the second
is the values per ring, α̂ = α/n, indicating the level of saturation with
increasing n. Polarizabilities are given in atomic units. . . . . . . . . 53

viii



ix

3.10 Frequency-dependent dipole polarizabilities of benzene and the lowest
excited state of any symmetry (denoted by ωpole) at the respective lev-
els of theory using the Sadlej basis set. Polarizabilities and frequencies
are given in atomic units. . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Frequency-dependent dipole polarizabilities of pyrene and the lowest
excited state of any symmetry (denoted by ωpole) for the four DFT
methods. Polarizabilities and frequencies are given in atomic units. . 55

4.1 CCSD polarizabilities (in a.u.) of benzene. . . . . . . . . . . . . . . . 67
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ABSTRACT

The parallel implementation of coupled-cluster response theory within NWChem and

its subsequent application to novel chemical problems is reported. Linear-response

dipole polarizabilities of polyacenes, the 60-carbon buckyball, and larger water clus-

ters were computed with coupled-cluster singles and doubles (CCSD) and compared

to density-functional results. The complete treatment of coupled-cluster response

theory including up to triples (CCSDT) was applied to diatomic molecules using

large basis sets and this method was used to evaluate a newly-developed perturbative

approximation for triples. Hyperpolarizabilities and Lennard-Jones coefficients were

implemented at the CCSD level of theory by extending the linear response code in two

different ways. Benchmark hyperpolarizabilities are reported for molecules as large

as para-nitroaniline using large basis sets. Tensor transpose algorithms are shown to

be an important component in a coupled-cluster property code and automatic code

generation successfully identified faster algorithms for these.
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CHAPTER 1

INTRODUCTION

This thesis focuses on the computation of electric properties of molecules using

massively-parallel computers. While significant effort has been devoted to the de-

velopment of software for computing the ground-state energy at various levels of

approximation, proportionally little effort has been spent on software for molecular

properties, particularly those corresponding to higher-order derivatives. Over the

last three years, I have implemented coupled-cluster linear response polarizabilities

for singles and doubles (CCSD), singles, doubles and triples (CCSDT), and singles,

doubles, triples and quadruples (CCSDTQ) within the massively-parallel chemistry

software package NWChem. In each case, mine was the first parallel implementation

of coupled-cluster response theory reported, and it has allowed the study of chemical

problems of unprecedented scale. In addition, code for CCSD quadratic response hy-

perpolarizabilities and linear response C6 coefficients was developed. The following

chapters describe these chemical applications and the associated theory which was

implemented to compute the response properties of interest.

Despite the obvious fact that experiments are the only direct means to probe

the physical world, there are numerous reasons to simulate models of reality. It

is important to recognize that computational chemistry only simulates models of

reality, but within a particular model, the results are directly interpretable. When a

variational calculation of the water molecule for a fixed geometry within a specified

basis produces a value for the ground-state energy, that is the exact ground-state

1
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energy within that model of reality. In contrast, experiments directly probe reality

but are only indirectly interpretable. Physical chemistry experiments do not produce

as output bond-lengths or energy differences, experiments produce electrical signals

which are converted into spectra by the apparatus. Only when the scientist interprets

this spectra using a model for the system subject to interrogation does s/he obtain the

data of interest. Because of the difficulty associated with interpreting spectra, there

is a long history of synergy between experimental and theoretical work in this regard.

Three experiments where theory was critical to attain the correct interpretation of

molecular spectra are:

• methylene (CH2) — is it bent or linear? (Ref. [1])

• methylene — ground-state singlet or triplet? (Ref. [2])

• benzaldehyde — what is the barrier to internal rotation? (Ref. [3])

Additional evidence for the importance of this type of synergy is that the two quantum

chemistry papers most recently published in Science were authored jointly by theorists

and experimentalists [4]. Additional examples of the important role of interplay

between theory and experiment are too numerous to list.

The second role of theory is to explain why nature behaves a certain way. Any

chemist can state authoritatively that water is a liquid at room temperature, since

regular encounters with liquid water are necessary to sustain human life. However,

why is water a liquid at room temperature? Ammonia and hydrogen fluoride are not,

despite having the same number of electrons (10) and protons (10) as water. Hydro-

gen sulfide is also not a liquid at room temperature, despite having a similar valence

character. More importantly, why is water necessary for human life while ammonia,
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hydrogen fluoride and hydrogen sulfide are quite contrary to it? Experiments can pro-

vide data on these phenomena, but only theory can explain why. Computation allows

us to test theories in ways experiment cannot, either due to genuine impossibility or

impracticality.

Consider, for example, the question of where a metal atom is positioned when

complexed with a fullerene [5]. Experimental data reveals a massive dipole polariz-

ability but does not produce relative coordinates for the metal with respect to the

fullerene. Computation, however, provides us an opportunity to test three possible

hypotheses for the geometric configuration of the aforementioned system: (1) the

metal sits on the outside surface of the fullerene, (2) the metal sits on the inside sur-

face of the fullerene, or (3) the metal floats near the center of the fullerene. For each

of these three configurations, one can compute the dipole polarizability and compare

the results to the experiment. Provided the computed approximation is sufficiently

accurate for this instance, it can conclusively resolve which geometric configuration

is present in the experiment. This approach will fail, however, if the computation is

not able to resolve the structures from each other with fine enough resolution, of if

the theoretical model used in the computation is inadequate.

The aforementioned scenario is one of many motivations for developing the compu-

tational tools reported in this thesis. When I first started writing the coupled-cluster

property code in NWChem in the summer of 2006, the largest molecular system

which had been treated with the coupled-cluster singles and doubles approximation

(CCSD) was benzene [6], and then only using a modest basis set. Although CCSD

was known to produce accurate results for diatomic molecules, it was not known at

that time if CCSD was a sufficiently complete theoretical model of electron correla-

tion for the computing dipole polarizabilities of benzene. I became aware of serious
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deficiencies in the density-functional formalism for electric-field properties (see Ref. 1

of Ch. 2) around that time and set out to try and understand what the necessary and

sufficient computational approximations were for computing polarizabilities. Subse-

quently, it was discovered that for larger systems (including benzene), the role of

triple excitations was small for polarizabilities. In addition, benchmark calculations

were performed starting with benzene and eventually reaching C60, nearly an order of

magnitude larger, a significant feat given the CCSD model scales to the sixth-power in

the system size. These results were used to evaluate numerous approximate methods

with lower computational cost, particularly density-functional theory (DFT). Because

of the large-scale benchmarks performed using my code, DFT property calculations

can now be performed with greater confidence on larger chemical systems, enabling

exploration of an ever greater set of experimental questions.

Unlike for experimental work, for computational models in chemistry, calibration

is significantly more difficult than the application of those models to the systems

of interest. An experimental apparatus might be calibrated with a pure solvent be-

fore studying solvent rearrangement in the vicinity of a photo-excited chromophore,

but the pure solvent experiment takes very little time if the machine is functioning

properly. However, what is the “pure solvent” of computational chemistry? The con-

ventional view is that one should perform high-level calculations on a model system to

determine the sufficient approximation required for use with a more complex system

not amenable to accuracy, expensive approximations. However, if the model system

does not adequately represent the complex system, the calibration step is meaning-

less. The most common excuse for inadequate calibration is that the computational

expense of a thorough benchmark study is infeasible. That the acquisition of many

of the computational results reported in the following chapters required a supercom-
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puter was one of the most important reasons why they were performed. After decades

of study, the coupled-cluster approximation has emerged one of the pillars of quan-

tum chemistry [7] and is a universally respected benchmark method for many kinds

of chemical phenomena. The implementation of coupled-cluster property methods

within a massively-parallel software package has already revealed new insight into

the computation of electric-field properties and will continue to do so for many years.

My work has shown that it is possible to accurately reproduce experimental values

for large systems using the same systematic approach employed for small molecules.

There is also some evidence that this task is actually easier for larger systems because

the complexity of the experiments grows rapidly, whereas the computational approach

willfully exclude the phenomena which keep experimentalists up at night. Resolving

which level of electron correlation treatment or basis set is necessary for a certain level

of accuracy can be addressed separately from vibrational effects, optical dispersion

or sample purity. The absence of such luxuries in experimental methods indicates

that the synergy between theory and experiment will increase as experiments grow

increasingly complex and computational methods grow in utility due to advances in

software and hardware.

The exploitation of ever-more-powerful supercomputers by developing massively-

parallel scientific software is one of the fundamental goals of this work. As more

supercomputers are installed at colleges and universities around the world, the im-

pressive results reported here will become pedestrian. The transformation of rare and

difficult scientific tasks into ubiquitous and easy ones is a central theme in computa-

tional chemistry and one to which I hope my work contributes.
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1.1 Overview

A reasonably complete presentation of coupled-cluster response theory and its im-

plementation within NWChem is provided in Chapter 2. Chapter 3 presents the

application of coupled-cluster response theory to polyacenes. Chapter 4 is a natu-

ral extension of the polyacene study to the C60 fullerene. Polarizabilities of water

clusters are the subject of Chapter 5. Chapter 6 reports on the extension of coupled-

cluster response theory to the CCSDT level of theory, while Chapter 7 discusses a

non-iterative approximation for triples.

In Chapter 8, I move outside of realm of polarizabilities to the computation of

C6 coefficients. Hyperpolarizabilities are the subject of Chapter 9. The integration

of coupled-cluster response theory into the NWChem QM/MM module is the focus

of Chapter 10. Finally, Chapter 11 analyzes the bottleneck serial operations in the

NWChem coupled-cluster property code and presents a rudimentary auto-tuning li-

brary to generate these kernels. Chapter 12 summarizes the conclusions while Chapter

13 includes some of my vision for the future of computational chemistry.

1.2 Omissions

This thesis focuses exclusively on response properties and their implementation within

NWChem. As such, I have omitted the following material which I also completed

during graduate school.

• R. K. Chaudhuri, J. R. Hammond, K. F. Freed, S. Chattopadhyay and U.

S. Mahapatra, J. Chem. Phys. 129, 064101 (2008). “Reappraisal of cis ef-

fect in 1,2-dihaloethenes: An improved virtual orbital (IVO) multi-reference

approach.”
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• J. R. Hammond and D. A. Mazziotti, Physical Review A73, 062505 (2006).

“Variational reduced-density-matrix calculation of the one-dimensional Hub-

bard model.”

• J. R. Hammond and D. A. Mazziotti, Physical Review A73, 012509 (2006).

“Variational reduced-density-matrix calculations on small radicals: a new ap-

proach to open-shell ab initio quantum chemistry.”

• J. R. Hammond and D. A. Mazziotti, Physical Review A71, 062503 (2005).

“Variational two-electron reduced-density-matrix theory: Partial 3-positivity

conditions for N -representability.”

In additional to the aforementioned omissions, Raman cross-sections computed

by numerical differentiation of the linear-response polarizability are not reported, nor

is a comparative study of density-functional and coupled-cluster polarizabilities for

molecules relevant to the pharmaceutical industry.

1.3 Background Material

The coupled-cluster (CC) method — which will be described in detail in the next chap-

ter — solves the electronic — i.e., Born-Oppenheimer [8] — Schrödinger equation [9]

in the basis set of one-electron orbitals which are produced by a Hartree-Fock [10]

calculation performed in a finite atomic-orbital basis set [11]. Although CC can be

used to solve the Schrödinger equation for other types of Hamiltonians [12, 13], these

applications will not be considered.

The reader is encouraged to consult some or all of the following material, which

contain introductory presentations of second-quantization, Hartree-Fock theory and

electron-correlation methods:
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• A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to

Advanced Electronic Structure Theory, (McGraw-Hill, New York, 1989).

• T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory,

(Wiley, Chichester, 2000).

• D.R. Yarkony, ed., Modern Electronic Structure Theory, (World Scientific, Sin-

gapore, 1995).

1.4 Unit conventions

Unless otherwise noted, all quantities are given in atomic units. The convention

that Planck’s constant (~) and the permittivity of free space (ǫ0) are unity will be

used throughout. As these quantities have no impact on the mathematics within this

convention, they will be omitted.
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CHAPTER 2

COUPLED-CLUSTER RESPONSE THEORY AND

NWCHEM

2.1 Coupled-cluster theory

The coupled-cluster (CC) method was first developed in the nuclear physics commu-

nity [1, 2], but was subsequently adopted for atomic and molecular problems [3, 4, 5,

6, 7, 8, 9, 10, 11]. It is one of the most popular methods in quantum chemistry, and

has been implemented within all major software packages, including Aces II [12, 13],

Dalton [14], GAMESS [15, 16], Gaussian [17], Molpro [18, 19], NWChem [20, 21],

PSI3 [22] and QChem [23] as well as the very recently released Aces III [24] and

CFOUR [25]. Some of the earliest implementations of CC within software packages

were Aces [26] (developed in Rod Bartlett’s group), PSI [27, 28] (developed in Fritz

Schaefer’s group) and TITAN [29]. This is not meant to be a complete historical

record of software development for CC; the interested reader is encouraged to inves-

tigate the literature for possible omissions.

2.1.1 The coupled-cluster energy equations

The CC wavefunction ansatz is

|ΨCC〉 = exp(T )|Φ〉 (2.1)

11
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where |Φ〉 denotes the reference functions, usually chosen as the Slater determinant

obtained from a Hartree-Fock SCF calculation, and the cluster operator, T , is given

by

T = T1 + T2 + · · · + TM (2.2)

Tm =
1

(m!)2

∑

i1,...,im

∑

a1,...,am

t
a1...am

i1...im
â
†
a1 . . . â

†
am

âim . . . âi1 , (2.3)

where â
†
p (âp) are the creation (annihilation) operators. The i1, i2, . . . (a1, a2, . . .)

indices refer to occupied (unoccupied) spin-orbitals in the reference |Φ〉. For the

exact theory the N parameter corresponds to the total number of correlated electrons

(N), while all practical approximate formalisms use M ≪ N . The quantities t
a1...am

i1...im

are referred to as the cluster amplitudes. With the exception of CCSD (M = 2),

the CC method is limited by the computational storage of the cluster amplitudes,

which scales as omvm, and the associated floating point computation, which scales

as omv(m+2). For CCSD, the memory bottleneck is the storage of the two-electron

integrals in the molecular orbital basis, which requires (o + v)4 storage when using

the conventional method. Algorithms which are based partially or fully upon atomic

integrals have different performance characteristics (See [19, 30].

The standard CC energy expression is obtained by projecting the standard energy

eigenvalue relationship onto 〈0| exp(−T ),

ECC = 〈Φ| exp(−T )H exp(T )|Φ〉. (2.4)

The CC similarity-transformed Hamiltonian, H = exp(−T )H exp(T ), will be used to

simplify subsequent equations. From the Baker-Campbell-Hausdorff expansion, we
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see that

H = H + [H, T ] +
1

2!
[[H, T ], T ] +

1

3!
[[[H, T ], T ], T ] +

1

4!
[[[[H, T ], T ], T ], T ] , (2.5)

where the expansion in commutators stops at four when there are only two-body

interactions. In this case, there are only four indices on H and thus it can be connected

with no more than four cluster operators, T .

Projection of the H onto m-fold (m = 1, . . . , M) excitation manifolds defines the

CC energy equations:

0 = 〈Φ
a1...am

i1...im
|H|Φ〉 (2.6)

|Φ
a1...am

i1...im
〉 = â

†
a1 . . . â

†
am

âim . . . âi1 |Φ〉 . (2.7)

Choosing m = 1, . . . , M ensures that the number of equations is the same as the

number of unknowns.

The effective Hamiltonian within the CCSD approximation is

H = H + [H, T1 + T2] +
1

2!
[[H, T1 + T2], T1 + T2]

+
1

3!
[[[H, T1 + T2], T1 + T2], T1 + T2]

+
1

4!
[[[[H, T1 + T2], T1 + T2], T1 + T2], T1 + T2] , (2.8)
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which leads to the following set of equations,

ECCSD = 〈Φ|H + [H, T1 + T2] +
1

2
[[H, T1], T1]|Φ〉 (2.9)

0 = 〈Φa
i |H + [H, T1 + T2]|Φ〉 +

1

2
〈Φa

i |[[H, T1], T1]|Φ〉

+ 〈Φa
i |[[H, T1], T2]|Φ〉 +

1

6
〈Φa

i |[[[H, T1], T1], T1]|Φ〉 (2.10)

0 = 〈Φab
ij |H + [H, T1 + T2]|Φ〉 +

1

2
〈Φab

ij |[[H, T1 + T2], T1 + T2]|Φ〉

+
1

2
〈Φab

ij |[[[H, T1], T1], T2]|Φ〉

+
1

24
〈Φab

ij |[[[[H, T1], T1], T1], T1]|Φ〉 , (2.11)

which define the CCSD method. Many terms from H disappear upon projection onto

singles and doubles. For example, [[[[H, T2], T2], T2], T2]|Φ〉 can only be projected only

the hextuply-excited manifold (Eqn. 2.7 for m = 6). Further simplications can be

made if H is separated into the Fock operator F and the fluctuation potential V . The

CCSD equations are carefully derived in the review by Crawford and Schaefer [9].

Even though Eqn. 2.6 represents a set of nonlinear equations, they are almost

exclusively solved via linearization. Eqns. 2.10 and 2.10 are solved via Jacobi itera-

tion [31], frequently combined with the DIIS method of Pulay [32], which is closely

related to Krylov-subspace methods [33]. Recently, a conjugate residual method for

solving the CC equations was reported [34] which has the potential to require less

memory than the Jacobi-DIIS method as well as converge more robustly for non-

canonical (i.e. local) formulations of CC. Because the residual of Eqn. 2.6 can be

formed with omv(m+2) computational cost and omvm storage even though the Ja-

cobian thereof is dimension omvm × omvm and dense, it is impractical to employ

methods which require the explicit formation of the Jacobian for solving the CC
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equations.

2.1.2 First derivatives of the energy

Molecular property calculations require energy derivatives, which can be symbolically

represented by dE/dx where x is a parameter that defines the electronic Hamiltonian

H(x) (for simplicity, we will denote this Hamiltonian by H). For example, x can

correspond to the nuclear coordinate in the case of gradients or an external electric-

field in the case of dipole moments. Straightforward differentiation of the CC energy

functional in Eq. 2.4,

dECC

dx
= 〈0|

∂H

∂x
|0〉 + 〈0|

[
H,

∂T

∂x

]
|0〉 , (2.12)

requires amplitude derivatives for every perturbation parameter, x. We obtain the

equations for the first-derivative amplitudes by differentiating Eq. 2.6,

0 = 〈X|
∂H

∂x
|0〉 + 〈X|

[
H,

∂T

∂x

]
|0〉 , (2.13)

where |X〉 denotes an arbitrary excited-state manifold (Eqn. 2.7). In the case of

CCSD, |X〉 = |S〉 + |D〉 where |S〉 and |D〉 are the singles and doubles manifold,

respectively, which correspond to m = 1 and m = 2 in Eqn. 2.7. Upon insertion of

the resolvent1 becomes

〈X ′|
∂T

∂x
|0〉 = −

{
〈X|H|X ′〉

}−1
〈X|

∂H

∂x
|0〉. (2.14)

1The resolvent is |X ′〉〈X ′| for all relevant excited-state manifolds X ′. Insertion of the resolvent
preserves the connectedness previously enforced via the commutator.
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This equation can be inserted into Eq. 2.12 along with the resolvent to give

dECC

dx
= 〈0|

∂H

∂x
|0〉 − 〈0|H|X ′〉

{
〈X|H|X ′〉

}−1
〈X|

∂H

∂x
|0〉 , (2.15)

which leads to the perturbation-independent Λ-equations [35],

〈0|Λ|X〉 = −〈0|H|X ′〉
{
〈X|H|X ′〉

}−1
. (2.16)

The amplitudes defined by Eqn.2.16 are Lagrange multipliers that provide a new

energy functional which satisfies the generalized Hellman-Feynman theorem [36],

ẼCC = 〈Φ|(1 + Λ)H|Φ〉, (2.17)

where

Λ = Λ1 + Λ2 + · · · + ΛM (2.18)

Λm =
1

(m!)2

∑

i1,...,im

∑

a1,...,am

λ
i1...im
a1...am

â
†
i1

. . . â
†
im

âam
. . . âa1 . (2.19)

Thus, any first-order property can be computed using an expectation-value like equa-

tion; for example, the dipole moment is computed with

µ = 〈Φ|(1 + Λ)µ̂|Φ〉 , (2.20)

where µ = exp(−T )µ exp(T ). The density matrices [37] required for CC analytic

gradients [35] are also computable with this approach when the dipole operator µ is

replaced with the 1- and 2-particle reduced-density-operators (RDOs).
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The Lagrange multipliers are solved via projection onto n-fold excitation manifolds

on the right

0 = 〈Φ|(1 + Λ)H|Φ
a1...am

i1...im
〉. (2.21)

The first-derivatives of the energy with respect to any parameter can now be written

dECC

dx
= 〈Φ|(1 + Λ)

dH

dx
|Φ〉. (2.22)

2.1.3 Second derivatives of the energy

Second derivatives of the CC energy functional can be obtained from the original

energy formula (Eq. 2.4),

d2ECC

dx dy
= P̂ (x, y)〈Φ|

[
∂H

∂y
,
∂T

∂x

]
|Φ〉 + 〈Φ|

[
H,

∂2T

∂x ∂y

]
|Φ〉

+ 〈Φ|

[[
H,

∂T

∂y

]
,
∂T

∂x

]
|Φ〉 , (2.23)

where P̂ (x, y)f(x, y) = f(x, y) + f(y, x) and we discard ∂2H
∂x ∂y because it will be zero

for all properties considered subsequently. This use amplitude second derivatives

requires the solution of |{x}||{y}| additional sets of linear equations. Alternatively,

second-derivatives can be obtained from the CC-Λ energy functional (Eq. 2.17) using

the symmetric formulation,

d2ẼCC

dx dy
= 〈0|(1 + Λ)

[
∂H

∂x
,
∂T

∂y

]
|0〉 + 〈0|(1 + Λ)

[
∂H

∂y
,
∂T

∂x

]
|0〉

+ 〈0|(1 + Λ)

[[
H,

∂T

∂y

]
,
∂T

∂x

]
|0〉 , (2.24)
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or the asymmetric formulation,

d2ẼCC

dx dy
= 〈0|(1 + Λ)

[
∂H

∂x
,
∂T

∂y

]
|0〉 + 〈0|

∂Λ

∂y

∂H

∂x
|0〉 , (2.25)

which require the solution of |{x} ∩ {y}| or 2 · |{y}| additional sets of linear equa-

tions, respectively. The optimal choice between these two depends on the type of

perturbation x and y correspond to.

The asymmetric formulation of second-derivatives is obtained from the symmetric

formulation in a manner similar to the derivation of Eqn. 2.20. Because the goal is

to eliminate the need for the ∂T
∂x amplitudes, we consider only the second and third

terms from Eqn. 2.24 and define a the following intermediate quantity,

(
d2ẼCC

dx dy

)

2,3

= 〈0|(1 + Λ)

[
∂H

∂y
,
∂T

∂x

]
|0〉 + 〈0|(1 + Λ)

[[
H,

∂T

∂y

]
,
∂T

∂x

]
|0〉 . (2.26)

By inserting the resolvent and using Eqn. 2.14, we see that

(
d2ẼCC

dx dy

)

2,3

= 〈0|(1 + Λ)

[
∂H

∂y
+

1

2

[
H,

∂T

∂y

]
,
∂T

∂x

]
|0〉 (2.27)

= 〈0|(1 + Λ)

{
∂H

∂y
|X〉 +

[
H,

∂T

∂y

]
|X〉

}
〈X|

∂T

∂x
|0〉 (2.28)

= 〈0|(1 + Λ)

{
∂H

∂y
|X〉 +

[
H,

∂T

∂y

]
|X〉

}

×
{
〈X ′|H|X〉

}−1
〈X ′|

∂H

∂x
|0〉 . (2.29)

The connection to Eqn. 2.25 is obvious after we define a new set of amplitudes,

〈0|
∂Λ

∂y
|X〉 = 〈0|(1 + Λ)

{
∂H

∂y
|X〉 +

[
H,

∂T

∂y

]
|X〉

}{
〈X ′|H|X〉

}−1
. (2.30)
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The first-order Lagrange-multipliers ∂Λ
∂y are obtained by solving

0 = 〈Φ|
∂Λ

∂y
H|X〉 − 〈Φ|(1 + Λ)[H,

∂T

∂y
]|X〉

− 〈Φ|(1 + Λ)
∂H

∂y
|X〉 . (2.31)

One advantage of using Eqn. 2.25 to compute properties is that one can compute

response densities D
(1)
y by replacing ∂H

∂y by the 1- and 2-particle RDOs and obtain

the second-derivatives by contracting these densities with ∂H
∂y . For properties where

∂H
∂y is the dipole operator, this is particularly simple since only the 1-particle density-

matrix is required. However, computing properties via Eqn. 2.25 requires that ∂Λ
∂y be

computed. For dipole polarizabilities, it is more efficient use Eqn. 2.24, but for prop-

erties corresponding to perturbations which depend on the nuclear centers (geometric

Hessians and NMR properties), it is advantageous to use the asymmetric formalism

for polyatomic molecules because there |{x} ∩ {y}| ≫ 2 · |{y}|.

2.1.4 Third derivatives of the energy

Third-order properties are obtained by simple differentiation of Eqn. 2.25:

d3ẼCC

dx dy dz
= P̂xyz

{
〈Φ|(1 + Λ)

[[
∂H

∂x
,
∂T

∂y

]
,
∂T

∂z

]
|Φ〉

+〈Φ|
∂Λ

∂x

[[
H,

∂T

∂y

]
,
∂T

∂z

]
|Φ〉

+〈Φ|(1 + Λ)

[[[
H,

∂T

∂x

]
,
∂T

∂y

]
,
∂T

∂z

]
|Φ〉

+〈Φ|
∂Λ

∂x

[
∂H

∂y
,
∂T

∂z

]
|Φ〉
}

(2.32)
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where P̂ enforces the appropriate permutation symmetry of the x, y and z compo-

nents. Computing third-derivatives requires T , Λ, ∂T
∂x , ∂T

∂y , ∂T
∂z , ∂Λ

∂x , ∂Λ
∂y and ∂Λ

∂z , but

no second-derivative amplitudes or multipliers. This is because Eqn. 2.17 satisfies sat-

isfies Wigner’s 2n + 1 and 2n + 2 rules [38] for the T and Λ amplitudes, respectively.

Previous derivations are consistent with this rule, as second-order properties can be

computed with T , Λ, ∂T
∂x , ∂T

∂y and ∂T
∂z and it was just demonstrated that third-order

properties require only first derivatives of the amplitudes and Lagrange multipliers.

Without deriving equations for fourth-order properties, it can be stated that they will

require, in addition to the amplitudes required for third-order properties, the solution

of second-derivative amplitudes of T but not of Λ.

2.1.5 From energy derivatives to response theory

Once the Hamiltonian H(x) can be represented in a simple form H(x) = H0 + xO,

where H0 is the original electronic Hamiltonian for isolated system, x is a scalar, and

operator O is considered as a perturbation (in our case, O is the dipole operator to

model the effect of an weak external electric-field), then the derivatives of energy and

cluster operator can be easily related to the coefficients in the perturbative expansion

for the energy and cluster operator,

E(x) = E(0) + λE(1) + λ2E(2) + · · · (2.33)

T (x) = T (0) + λT (1) + λ2T (2) + · · · . (2.34)

Straightforward algebra leads to

E(1) = 〈Φ| exp(−T )O exp(T )|Φ〉 + 〈Φ| exp(−T )
[
H, T (1)

]
exp(T )|Φ〉 (2.35)
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and the connection to Eq. 2.12 is obvious. The projected response equations to be

solved are

0 = 〈Φ
a1...am

i1...im
| exp(−T )O exp(T )|Φ〉 + 〈Φ

a1...am

i1...im
| exp(−T )

[
H, T (1)

]
exp(T )|Φ〉

(2.36)

which can be written as Ax + b = 0, with x corresponding to the perturbed ampli-

tudes, as stated by Monkhorst [39].

While the original CC response theory of Monkhorst is simple and effective for

computing low-order properties, it is not suitable for higher-order properties since it

requires tedious elimination of phase-factors. In 1990, Koch and coworkers rederived

CC response theory in a more useful fashion [40]. The general theory of quasi-energy

Lagrangians, which provides a means to derive arbitrary order time-dependent prop-

erties for variational and non-variational wavefunctions, is the subject of an exhaustive

review [41]. A detailed presentation of that subject will not be repeated here.

The working equations for CC response theory for second- and third-order dy-

namic properties presented transparently in Refs. [42] and [43]. For ω = 0, the zeroth-

order cluster operator (T ), the zeroth-order Lagrange multipliers (Λ(0)), first-order

cluster amplitudes (T (1)), and first-order Lagrange multipliers (Λ(1)) are obtained by

solving,

0 = 〈Φ
a1...an

i1...in
|H|Φ〉 (2.37)

0 = 〈Φ|(1 + Λ)H|Φ
a1...an

i1...in
〉 (2.38)

0 = 〈Φ
a1...an

i1...in
|[H, T

(1)
γ ]|Φ〉 + 〈Φ

a1...an

i1...in
|µγ |Φ〉 (2.39)

0 = 〈Φ|Λ
(1)
γ H|Φ

a1...an

i1...in
〉 + 〈Φ|(1 + Λ)[H, T

(1)
γ ]|Φ

a1...an

i1...in
〉

+ 〈Φ|(1 + Λ)µγ |Φ
a1...an

i1...in
〉 (2.40)
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for the excitation manifold (Φ
a1...an

i1...in
) used to define the cluster and Λ operators and

appropriate components of the dipole moment operator, µγ, where γ = x, y, z in the

nonsymmetric case.

2.2 NWChem and the Tensor Contraction Engine

The CC equations are not easily to program efficiently, particularly in parallel. Due

to the exhaustive coverage of various ways that CC has been programmed available

in the literature, this topic will not be covered here. A straightforward presentation

of the CC equations in algebraic form is Ref. [16] while Ref. [9] present the working

equations in both algebraic and diagrammatic form.

A breakthrough for programming CC for parallel computers was the Tensor Con-

traction Engine (TCE) [44, 45]. The TCE combined a number of advanced topics

in programming, including automatic code generation, complex algorithmic transfor-

mations and strategies for achieving parallelism, such as tiling. The TCE was not

the first project to employ these techniques, but it was the first to combine them and

solve a complex programming problem like CC. Despite all its advantages, signficant

hand-tuning was required to enable to code to scale to thousands of nodes on modern

supercomputers. Some of these developments are reported in Ref. [46].

The structure of NWChem as a whole has been reviewed many times [47], so we

will not describe the Global Array tools [48], NWChem’s object-oriented design2, or

any of the modules besides the TCE module, which contains the CC property code.

The TCE module in NWChem includes more than 80,000 lines of hand-written code

2Object-oriented (OO) design is not the same as using an OO language such as C++. NWChem
is written almost exclusively in Fortran 77, with the remaining code written in C, but the design is
modular and data-encapsulation is implemented to the extent permitted by the language.
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Table 2.1: Line counts for various components of the NWChem CC code. The equa-
tions in the text corresponding to each procedure are given.

Lines of codea

Procedure Corresponding Equations CCSD CCSDT CCSDTQ
T -equations 2.37 46325 50010 52236
Λ-equations 2.38 41365 83936 225466

EOM (CC Jacobian) 2.39.1 & 2.40.1 91308 201036 364325
Linear response 2.39.2 & 2.24 40975 269053 340652

Quadratic response 2.40.2, 2.40.3 & 2.32 151158 332198b -
a Line counts for linear and quadratic response are for the response functions as

EOM procedures are reused for the solution of the response equations.
b This feature is not yet interfaced to the main driver.

and approximately 2.75 million lines written by the TCE code generator. Table 2.1

gives an accounting of the lines of code used at each level of CC approximation

(CCSD, CCSDT and CCSDTQ) for the procedures necessary to compute properties.

The code generated by TCE is exclusively for computing tensor contractions. A

large number of procedures are necessary because of many different types of contrac-

tions possible between tensors of various rank. For example, there are only four ways

to contract two rank-2 tensors3, but hundreds of ways to contract a rank-2 and rank-3

tensor, for example. It is not possible to provide code for all of the tensor contrac-

tions used in the TCE4, but it is instructive to consider one case to understand how

parallelism is achieved. Consider the procedure for computing a simple contraction,

J
h1h2
p3p4 =

∑

p5

T
h1h2
p3p5 · I

p5
p4 , (2.41)

3Matrices are rank-2 tensors. The four ways to contract matrices A and B to a third matrix C
are C = AB, C = AT B, C = ABT and C = AT BT .

4The code can be downloaded for free as part of NWChem. See
http://www.emsl.pnl.gov/docs/nwchem/.
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where I is a singles intermediate (m = 1), J is a doubles intermediates (m = 2), T

is the array of doubles amplitudes and p and h are indices representing particles and

holes, respectively. The procedure to compute this tensor contraction is described

in Figure 2.1. Tiles are sets of indices for molecular orbitals which all have the

same spin- and spatial-symmetry properties. The conditionals C1, C2, C3, C4 and C5

are all related to spatial and spin symmetry at the tile level. Details for the local

computation (compute Jb += Tb*Ib) can be found in Chapter 10. The put and get

are one-sided communication operations performed using Global Arrays.

A very important feature in Figure 2.1 is my turn, which determines if a given node

will perform the subsequent local operations. It queries a global counter which runs

over all possible tasks in a given contraction and provides for parallel load-balancing.

2.2.1 NWChem parallelism in non-technical language

A simple analogy for the parallel load-balancing strategy in the TCE would be 1000

workers transcribing the United States Declaration of Independence (USDI) onto

stone blocks, one for each word. A chalk board visible to all works has the number

“1” written on it. The first worker claims the word “When” and then replaces the “1”

on the chalk board with “2” and begins to carve “When” into his stone block. The

next worker in line sees the number “2” and knows to carve “in” into her stone block.

She also increments the chalkboard counter. This proceeds until all words are carved

in stone blocks. When stone block is finished, it is placed in the appropriate location

on the ground such that when all blocks are finished, the USDI will be reproduced

correctly. The management of the layout of stone blocks is done by a wizard who has

previously determined the location of all blocks and can provide exact coordinates for

where all finished stone blocks should be placed. When a worker finishes a block, a
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Figure 2.1: Procedure for computing a particular contraction. See text for details.

for P3 in all P tiles:

for P4 in all P tiles:

for H1 in all H tiles:

for H2 in all H tiles:

if my_turn:

if C1 and C2 and C3:

create and zero buffer Jb

for P5 in all P tiles:

if C5 and C6:

create and zero buffer Tb

get Tb from global T

reorder Tb

create and zero buffer Ib

get Ib from global I

reorder Ib

compute Jb += Tb*Ib

endif

endfor

reorder Jb

put Jb to global J

endif

endif

endfor

endfor

endfor

endfor
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trained gorilla takes the block and puts into the appropriate location, having received

the proper instructions from the wizard. Because the gorillas are well-trained, workers

need not be concerned with the fate of their stone block one the gorilla takes it. It is

the responsibility of the wizard, not the worker, to ensure that all blocks end up in

the proper place.

In the previous analogy, the workers are local compute nodes, the wizard is the

Global Array library, the chalkboard is the ARMCI NXTVAL operation and the gorillas

are one-sided communication operations in ARMCI. For details, see the documenta-

tion for the Global Array tools [49]. It is important to recognize that NWChem uses

one-sided communication, not two-sided communication or message-passing. It is far

more difficult to implement the complex algorithms of CC using MPI [50].

The necessary conditions for good parallel performance in NWChem can be in-

ferred from the previous analogy. If the text to be transcribed to stone was not the

USDI, but rather a 14-word sentence, 986 of the 1000 workerss would do absolutely

nothing, as their would be no words available for them to carve. In parallel comput-

ing, this condition is called data-starvation. A condition known as load-imbalance

also leads to poor parallel performance. Consider the transcription to stone of the list

of states — carving “Mississippi” takes much longer than “Iowa.” Thus, the worker

who carves the shorter state name will finish much quicker. If the next name that

worker carves is also short, he or she may finish around the same time as the worker

with the longer name. However, if those two names are the last names carved by

both workers, then one worker sits idle while the other finishes. Hence, it is optimal

to rearrange the list of names such that long names come first and short names are

last. Another solution is to combine into a single task the carving of “Iowas” and

another short name. The consequences of a load-imbalance grow with the size of the
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computer used. It is not terrible for 2 of 4 processors to sit idle for 30 seconds, but

if half the processors in BlueGene/P sit idle for 30 seconds, that is almost 1 day of

wasted processor time in total.

The connection of the analogy to quantum chemistry is that when the tiles of

orbitals vary greatly in size or are too few in number (i.e. Ntasks ≫ Nprocessors

is false) the parallel performance will be poor. This can occur for molecules with

high-symmetry or when one uses too many processors for a particular problem. On

the positive side, when a molecular system — usually large and lacking any spatial

symmetry — produces set of tiles which align well to the number of processors used,

near-perfect scaling is attained [46].

2.2.2 Summary

NWChem is parallel framework for developing computational chemistry because it

is built upon a powerful set of tools which implement basic functionality required

for many algorithms. While it is not possible to describe all of the useful features

in NWChem, or even all of the components of the TCE module, the code example

given above provides provides the necessary foundation for understanding the parallel

structure of the TCE CC code in more detail. The interested reader is encouraged to

download NWChem and peruse the source code, as this is the only way to obtain a

thorough understanding of how the algorithms work.
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P. R. Taylor); VPROPS (P. Taylor) ABACUS; (T. Helgaker, H. J. Aa. Jensen,

P. Jørgensen, J. Olsen, and P. R. Taylor).

[13] Aces II, a quantum chemical program package written by J. F. Stanton, J. Gauss,

J .D. Watts, P. G. Szalay, R. J. Bartlett with contribution from A. A. Auer, D. B.

Bernholdt, O. Christiansen, M. E. Harding, M. Heckert, O. Heun, C. Huber, D.

Jonsson, J. Juselius, W. J. Lauderdale, T. Metzroth, K. Ruud and the integral

packages MOLECULE (J. Almlöf and P. R. Taylor),Props (P. R. Taylor), and

ABACUS (T. Helgaker, H. Aa. Jensen, P. Jørgensen, and J. Olsen). See also

J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, R.J. Bartlett, Int. J.

Quantum Chem. Symp. 26, 879 (1992) as well as: http://www.aces2.de for the

current version.

[14] DALTON, a molecular electronic structure program, Release 2.0 (2005), see

http://www.kjemi.uio.no/software/dalton/dalton.html.

[15] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J.

H. Jensen, S. Koseki, N.Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M.

Dupuis, J. A. Montgomery, J. Comp. Chem. 14, 1347 (1993); M.S.Gordon and

M.W.Schmidt, in Theory and Applications of Computational Chemistry: The



30

First Forty Years, edited by C.E. Dykstra, G. Frenking, K.S. Kim, and G.E.

Scuseria (Elsevier, 2005), pp. 1167-1189.

[16] P. Piecuch, S. A. Kucharski, K. Kowalski and M. Musia l, Comp. Phys. Comm.

149, 71 (2002).

[17] Gaussian 03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin,

J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,

M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M.

Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,

O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V.

Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.

J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,

G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.

Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,

J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B.

B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J.

Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,

P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,

Gaussian, Inc., Wallingford CT, 2004.

[18] MOLPRO is a package of ab initio programs written by H.-J. Werner, P.

J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A.
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R. A. Kendall, R. A. Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L.

Taylor, A. T. Wong, G. I. Fann, R. J. Littlefield and J. Nieplocha, in Lecture

Notes in Computer Science (Springer, Berlin, 1996), Vol. 1041, pp. 278-294; T.

L. Windus, E. J. Bylaska, M. Dupuis, S. Hirata, L. Pollack, D. M. Smith, T. P.
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CHAPTER 3

DYNAMIC POLARIZABILITIES OF POLYAROMATIC

HYDROCARBONS USING COUPLED-CLUSTER

LINEAR RESPONSE THEORY

This chapter has been previously published in the following article: J. R. Hammond,

K. Kowalski and W. A. de Jong, “Dynamic polarizabilities of polyaromatic hydro-

carbons using coupled-cluster linear response theory,” J. Chem. Phys. 127, 144105

(2007). Copyright 2007 by the American Institute of Physics.

3.1 Introduction

Density-functional-theory (DFT) faces well-known challenges in accurately describing

the polarizabilities and hyperpolarizabilities of conjugated systems [1], and accurate

calculations require both a proper description of the correlation effects and judicious

choice of the orbital basis set. Accuracy for smaller oligomers using a given combina-

tion of functional and basis set does not necessarily extend to larger oligomers. Be-

cause DFT is used to model organic chromophores and nanographene, which contain

many aromatic rings, it is important to understand the accuracy of these methods in

detail and to evaluate the role of exact-exchange and electron correlation in achieving

quantitative accuracy in large conjugated systems. The availability of coupled-cluster

results would be invaluable in quantifying the accuracy of different density-functional

methodologies for these systems. Using our newly developed coupled-cluster singles
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and doubles (CCSD) linear response theory codes, we calculate static and dynamic

dipole polarizabilities for large aromatic hydrocarbons, including benzene, pyrene and

linear oligoacenes as large as hexacene.

Because the dipole polarizability is related to many other molecular properties,

the benchmark coupled-cluster calculations can be used to evaluate the potential ac-

curacy of other approximate methods for properties other than the polarizability. The

polarizability at complex frequencies is used to calculate C6 parameters [2, 3] while

the Raman scattering cross section is obtained from derivatives of the polarizability

with respect to vibrational modes according to the Placzek theory [4, 5]. The ac-

curacy of the polarizability is directly related to the accuracy of the linear response

function, the poles of which are electronic excitations. Hyperpolarizabilities are ob-

viously derivatives of the polarizability, and finally, the microscopic polarizability is

related to to the dielectric constant via the Clausius-Mossotti equation [6]. Some of

these issues are discussed in this chapter.

Previous comparisons of density-functional and coupled-cluster polarizabilities

employed finite field techniques [7], suitable only for static properties, or were con-

strained to diatomic molecules or minimal basis sets [8]. Comparison of density-

functional and ab initio methods for extended systems have been performed by Cham-

pagne and coworkers [1] by focusing on hydrogen chains and linear polyenes using

simple ab initio methods, such as Hartree-Fock (HF) and second-order perturbation

theory (MP2), for comparison.
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3.2 Theory and computational details

Coupled-cluster theory and its linear response extension have been described in a num-

ber of papers [9, 10, 11]; in this section we present only salient features of this method-

ology (for details regarding the implementation used for this paper see Ref. [12]).

Results in this chapter employ the asymmetric formulation of the second-derivative

of the energy:

d2ẼCC

dxdy
= 〈0|(1 + Λ) exp(−T )

∂2H

∂x∂y
exp(T )|0〉

+ P̂ (x, y)〈0|(1 + Λ) exp(−T )

[
∂H

∂y
,
∂T

∂x

]
exp(T )|0〉 (3.1)

+ 〈0|(1 + Λ) exp(−T )

[[
H,

∂T

∂y

]
,
∂T

∂x

]
exp(T )|0〉,

where P̂ (x, y)f(x, y) = f(x, y) + f(y, x). Three iterative steps: (1)the CCSD equa-

tions (defining the CCSD cluster operator T = T1 + T2); (2) the CCSD-Λ equations

(defining the CCSD de-excitation operator Λ = Λ1 + Λ2); and (3) the first order

CCSD response equations (defining the first order linear response CCSD cluster am-

plitudes T (1) = T
(1)
1 + T

(1)
2 ), were implemented in NWChem [13] using the Tensor

Contraction Engine [14] suite of programs. All CC codes include the more efficient

handling of two-electron integrals and improved offset tables [15].

For benzene, the geometry used was the same as that of Rizzo and coworkers [16].

All-electron (ae) HF/cc-pVTZ, B3LYP/cc-pVTZ and PBE0/cc-pVTZ and frozen-

core (fc) MP2/cc-pVTZ optimized geometries were calculated within NWChem. All

optimized geometries were done assuming a D2h geometry and singlet ground state,

which is consistent with the earlier work of Kadantsev, et al. [17].

Density-functional linear response calculations were performed within the Dalton
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2.0 suite of programs [18] using the direct SCF method [19]. Basis sets were obtained

from the Dalton basis set library. Parameters for the density-functionals used (PBE,

PBE0, BLYP, B3LYP) were set using the specifications given in the manual [20].

A single set of data was calculated within Gaussian 03 [21] to extend the results of

Schlegel and coworkers [22] to complete Table 3.9.

To investigate the effect of truncating the cluster expansion at doubles, the CC3

model is applied to the benzene molecule using small basis sets. Coupled-cluster

calculations at the CCSD and CC3 levels of theory were performed using the Aces

II quantum chemistry package [23]. The convergence criteria was 10−9 for SCF and

10−6 for CC iterations. Because of the steep scaling of CC3 and the serial nature of

the Aces code, polarizabilities for benzene could only be calculated using 6-31+G*, 6-

31++G** and aug-cc-pVDZ. A more complete study of the role of triples is underway

using the massively parallel implementation of CCSDT-LR polarizabilities within

NWChem [24].

All NWChem CCSD calculations were performed fully in-core on MPP2 [25]. All

CCSD calculations used an RHF reference wavefunction and no core orbitals were

frozen. Basis sets were obtained from the NWChem basis set library. Spherical d-

functions were used for calculations reported in this chapter. The effect of using

Cartesian d-functions instead of spherical ones is ∼ 0.01 a.u. for both energies and

polarizabilities of the 6-31+G*, 6-31++G**, 6-311+G*, 6-311++G**, aug-cc-pVDZ

and Sadlej pVTZ basis set calculations shown in Table 3.2. The SCF iterations

were converged to 10−7 and CCSD iterations were converged to 10−4. This lower

convergence threshhold was employed for the coupled-cluster iterative steps to reduce

the wall time on larger calculations. To ensure that this level of convergence was

sufficient for meaningful results, calculations using a higher convergence threshhold
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Figure 3.1: Convention for the tensor components of the polarizability. In both cases
the N component comes out of the plane of the page.

L

M

L

M

n-1

(10−8) were performed for the aug-cc-pVDZ and Sadlej pVTZ basis set calculations

shown in Table 3.2. The change in convergence threshhold had a negligible effect

(∼ 0.05 a.u.) on polarizabilities and energies (∼ 5 ·10−6 a.u.), particularly given that

the errors due to basis set and the incompleteness of the CCSD model are at least

an order of magnitude larger than the effect due to convergence (see Section 3.3 for

a complete discussion).

All energies and polarizabilities reported in this chapter are reported using atomic

units. Geometry parameters are in Angstroms. For benzene, the polarizability tensor

components are αLL = αMM in the plane of the molecule, and αNN perpendicular

to it. For pyrene and the oligoacene series, the αLL component is the longest axis of

the molecule, αMM the other axis in the plane defined by the aromatic rings, and

αNN the axis normal to the plane. See Figure 3.1 for a visual representation.

3.2.1 Performance analysis

The performance of the CCSD-LR in NWChem is demonstrated in Table 3.1. The

relative timings for for CCSD, CCSD-Λ and CCSD-LR are approximately 2 : 4 : 3.

The unfavorable scaling of the CCSD-Λ equations with respect to the CCSD ones is

mainly caused by the need of using the most expensive four-virtual-index 2-electron
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Table 3.1: Timing data for parallel CCSD-LR calculations. All calculations were
performed using the Sadlej TZ basis set in D2h symmetry. The CCSD-LR timings
refers to the Z-axis and were taken from iteration 5 for all cases. Timings are in
seconds.

CPU Timings Per Iteration
Molecule Atomic Basis Set Rank Processors CCSD CCSD-Λ CCSD-LR

C6H6 198 64 9.8 20.2 15.7
C10H8 312 128 45.6 82.3 68.7
C14H10 426 256 82.4 160.6 116.0
C18H12 540 256 399.1 925.5 621.7
C22H14 654 512 359.2 746.7 478.5
C26H16 768 640 1001.8 2053.2 1236.0

integrals twice: in the equations for doubly excited Λ amplitudes and in the equation

for singly excited Λ amplitudes (the 〈Φ|Λ2VNT1|Φ
a
i 〉 term). In the CCSD equations

these integrals are used only once in the equations for doubly excited amplitudes.

The timings of the CCSD-LR part are generally the same as the timings of the EOM-

CCSD approach for a single root since solving the CCSD-LR response equations is

equivalent to solving the right-eigenvalue equations, except for the term corresponding

to the similarity transformed dipole operator. Evaluation of the last term in the

polarizability in the form of Eq. 3.1 is approximately as expensive as one iteration of

CCSD-Λ. In the symmetric formulation, the evaluation of the polarizability would be

computationally trivial, as it requires only the dipole integrals, although that requires

iterative solution of Λ(1), which is at least as expensive as CCSD-Λ.

There appears to be no significant decrease in performance for many hundreds

of processors, indicating that the ceiling on CCSD property calculations is much

greater than 1000 spatial orbitals, which opens the door to a whole new size regime

for accurate calculation of molecular properties.
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3.3 Results

We compare CCSD to four common density-functionals (PBE, PBE0, BLYP, B3LYP)

in two ways: (i) dynamic polarizabilities of oligoacenes n = 1 − 6 and (ii) dynamic

polarizabilities of benzene and pyrene for a wide range of frequencies. The basis set

dependence of CCSD static polarizabilities and the role of triples is evaluated using

benzene. Sources of error with respect to experiment come from the incompleteness

of the one-particle and many-particle basis sets, both of which are addressed below,

and vibrational effects, which are not considered in this study.

3.3.1 Basis set convergence

Because of the computational cost of coupled-cluster calculations, it is important to

find the most efficient basis set for obtaining accurate polarizabilities. To evaluate the

basis set convergence for oligoacenes, we considered the smallest reasonable subunit,

benzene, which permitted calculations employing very large basis sets (see Table 3.2).

Static dipole polarizabilities of benzene were calculated using a number of Pople [28]

and Dunning [27] basis sets as well as the Sadlej pVTZ basis set [26]. The largest

basis set used, aug-cc-pVQZ, is used as the standard for comparison.

For benzene, Dunning basis sets greatly outperform Pople basis sets of similar

size for polarizability calculations at the CCSD level of theory. The aug-cc-pVDZ

basis, with only 192 functions, produces equivalently accurate results to the largest

Pople basis considered, 6-311++G(3df,3pd), which has 342 functions. Smaller basis

sets in the Pople family greatly underestimate both polarizability components. For

quantitative results, the smallest Pople basis set that can be used is 6-311++G(2d,2p).

Smaller basis sets which include only one d-function underestimate the polarizability
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Table 3.2: Static dipole polarizabilities of Benzene calculated with CCSD and a
variety of basis sets. Energies and polarizabilities are given in atomic units.

Basis Set Atomic Basis Set Rank ECCSD αLL αNN
6-31+G* 120 -231.5146 75.06 39.87
6-31++G** 144 -231.5640 75.53 40.51
6-311+G* 150 -231.6896 75.32 40.16
6-311++G** 174 -231.7352 75.99 40.70
6-311++G(2d,2p) 222 -231.7923 78.22 42.96
6-311++G(3df,3pd) 342 -231.8935 79.63 44.17
aug-cc-pVDZ 192 -231.5894 80.13 44.89
aug-cc-pVTZ 414 -231.8807 80.26 44.51
aug-cc-pVQZ 756 -232.0006 80.14 44.25
d-aug-cc-pVDZ 270 -231.5915 80.53 45.00
d-aug-cc-pVTZ 564 -231.8841 80.35 44.49
Sadlej TZ 198 -231.6826 80.57 44.66

by more than 5% for benzene. The error in 6-311++G(2d,2p) can be understood by

comparing the exponents of the two d-functions of carbon and the two p-functions

of hydrogen with those from aug-cc-pVDZ. In the former, the exponents are 1.252

and 0.313 for carbon and 1.500 and 0.375 for hydrogen while in the latter they are

0.550, 0.151, 0.727 and 0.141, respectively. The approximately two-fold decrease in

the d-function exponent for aug-cc-pVDZ produces polarizabilities nearly equivalent

to aug-cc-pVQZ, although the total energy is more than 0.2 a.u. higher. The 6-

311++G(3df,3pd) basis includes another diffuse (ζ = 0.1565) d-function, at which

point the polarizabilities are close to those of aug-cc-pVQZ.

The Pople basis sets systematically converge to the aug-cc-pVQZ polarizability

from below, while the Dunning basis sets appear to converge from above, if we neglect

the smallest case, aug-cc-pVDZ, although certainty as to the convergence in the basis

set cannot be obtained without calculations at even larger basis sets. The singly-
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augmented Dunning basis sets are suitable for polarizabilities because they all include

two d-functions, which allows a balanced convergence in the correlation energy as

well as properties. The Pople basis sets were optimized for thermochemistry before

correlated methods became commonplace and one should not expect a similar rate of

convergence in the basis set for energies and properties.

The Sadlej pVTZ basis set produces accurate results with a small number of

functions and was specifically designed for polarizability calculations [26]. For that

reason, it is the only basis set used for extremely large calculations where using more

functions is computationally intractable.

3.3.2 Importance of iterative triples

While the CCSD model obtains a large percentage of correlation effects for a wide

variety of molecules, the contribution of triples is important for both energies and

properties. For energies, the CCSD(T) model [29] is widely used for the inclusion of

triples, but this method has no corresponding response function, and cannot be used

to obtain dynamic properties. For calculating response functions, the CC3 model [30]

has been shown to be an excellent approximation to full iterative triples [31]. The

effect of triple excitations is important for dynamic polarizabilities [32]; computational

limitations permitted evaluating the effect of triples using the CC3 model only for

static polarizabilities of benzene using three small basis set, 6-31+G*, 6-31++G**,

and aug-cc-pVDZ. The results are listed in Table 3.3. Because the use of small basis

sets mitigates the full manifesting of triples and the accuracy of CC3 has not been

calibrated for molecules with more than two atoms, future investigation is necessary

to fully understand the role of triples in aromatic molecules.

For benzene, the absolute difference between αLL polarizabilities for the CCSD
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Table 3.3: Benzene dipole polarizabilities calculated with CCSD and CC3 and the
three small basis sets. Energies and polarizabilities are given in atomic units.

Method ECC αLL αNN
6-31+G*

CCSD -231.514693 75.05 39.81
CC3 -231.552142 74.47 39.88

∆ -0.037449 -0.58 0.07
6-31++G**

CCSD -231.564128 75.50 40.43
CC3 -231.602965 74.81 40.43

∆ -0.038837 -0.69 0.00
aug-cc-pVDZ

CCSD -231.589824 80.09 44.83
CC3 -231.631672 79.24 44.59

∆ -0.041848 -0.85 -0.24

and CC3 models increases with the flexibility of the basis set, from 0.58 to 0.69

with the singly and doubly augmented Pople basis sets to 0.85 for aug-cc-pVDZ. The

difference in the αNN polarizability is negligible for the Pople basis sets and 0.24

for aug-cc-pVDZ. While the small basis sets make definitive conclusions impossible,

the effect of triples for static polarizabilities of benzene is not large enough to justify

concern as to the validity of the CCSD calculations. A more complete investigation

of the role of triples in aromatic molecules, particularly for dynamic polarizabilities,

is in progress [24].

3.3.3 Geometry effects

When studying long conjugated systems, one must carefully select the method with

which to optimize the geometry. In this section, we compare optimized carbon-

carbon bond lengths from B3LYP to SCF, PBE0 and MP2 (See Table 3.4 for details).
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Kadantsev, et al. [17] previously found that for naphthalene, anthracene, tetracene

and pentacene, B3LYP/6-311++G(d,p) agrees well with experiment compared to

PBE and LSDA. Martin and coworkers studied polyaromatic hydrocarbons including

naphthalene and anthracene and found the B3LYP/cc-pVDZ was generally accepted

for understanding the structural properties of these molecules, but that due to bond-

length-alternation (BLA), B3LYP/cc-pVTZ is desirable [33]. Houk and coworkers

found that B3LYP/6-31G* reproduced crystallographic geometries to within 0.01 Å

for benzene through pentacene [36]. An experimental geometry for hexacene is not

available because it is not stable [37].

The optimized geometries in this study employ a larger basis set than previously

used for these molecules and include frozen-core MP2 calculations as well, which

have not been reported for most of these molecules. For anthracene, none of the

methods reproduce all of the bond lengths accurately. There are many reasons why

this could be the case. The accuracy of geometries for larger polyacenes, where

BLA is more likely to occur, is of greater concern. Fortunately, the B3LYP and

PBE0 for anthracene agree well with the corrected B3LYP/cc-pVDZ values of Martin

and coworkers [33]. Both DFT methods agree with the tetracene and pentacene

experimental geometries to within 0.01Å, except for three bonds in tetracene. SCF

and MP2 are noticeably less accurate. Because no experimental geometry is available

for hexacene, a complete evaluation of optimized geometries is not possible.

Because the B3LYP/cc-pVTZ optimized geometries agree well with the experi-

mental ones, polarizability calculations were not run at other geometries. Further

justification is the excellent agreement of CCSD polarizabilities with experiment for

naphthalene using the B3LYP geometry.
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Figure 3.2: Numbering scheme for carbon atoms in (a) anthracene, (b) tetracene,
(c) pentacene, (d) hexacene. The presence of double bonds indicates only that all
carbons are sp2 hybridized.

(a)

(b)

(c)

(d)

1

2

3
4

5

6

1

2

3
4

5

6
7

8

1

2

3
4

5

6
7

8

9

1

2

3
4

5

6
7

8

9
10

11



48

Table 3.4: Geometry data for anthracene, tetracene, pentacene and hexacene. All
calculations were performed using the cc-pVTZ basis set. For MP2 only, the core
orbitals were frozen. All bond lengths are given in Angstroms.

Bond SCF B3LYP PBE0 MP2 Expt.a

Anthracene
d(C1−C2) 1.43040 1.42144 1.41826 1.41268 1.442(8)
d(C2−C3) 1.34339 1.36331 1.36058 1.36664 1.397(4)
d(C3−C4) 1.43298 1.42548 1.42178 1.41380 1.437(4)
d(C4−C5) 1.42047 1.43970 1.43399 1.43214 1.437(4)
d(C4−C6) 1.38567 1.39499 1.39170 1.39093 1.392(6)

Tetracene
d(C1−C2) 1.43993 1.42622 1.42302 1.41540 1.46
d(C2−C3) 1.33792 1.36025 1.35748 1.36509 1.35
d(C3−C4) 1.44143 1.42963 1.42593 1.41585 1.42
d(C4−C5) 1.43454 1.44670 1.44091 1.43553 1.42
d(C4−C6) 1.36918 1.38677 1.38359 1.38714 1.39
d(C6−C7) 1.40493 1.40509 1.40188 1.39682 1.40
d(C7−C8) 1.42316 1.44685 1.44121 1.44257 1.46

Pentacene
d(C1−C2) 1.44576 1.42871 1.42563 1.41619 1.43
d(C2−C3) 1.33484 1.35873 1.35603 1.36477 1.35
d(C3−C4) 1.44638 1.42871 1.42795 1.41619 1.42
d(C4−C5) 1.44472 1.43594 1.44452 1.45044 1.44
d(C4−C6) 1.35946 1.38669 1.37966 1.38287 1.38
d(C6−C7) 1.41747 1.41009 1.40679 1.39785 1.40
d(C7−C8) 1.43057 1.44650 1.44593 1.45180 1.45
d(C7−C9) 1.38718 1.39691 1.39359 1.39328 1.39

Hexacene
d(C1−C2) 1.44948 1.43011 1.42700 1.42233
d(C2−C3) 1.33293 1.35789 1.35514 1.37040
d(C3−C4) 1.44949 1.43273 1.42908 1.42384
d(C4−C5) 1.45198 1.45244 1.44658 1.42261
d(C4−C6) 1.35340 1.38078 1.37756 1.39478
d(C6−C7) 1.42580 1.41265 1.40944 1.40489
d(C7−C8) 1.43830 1.45465 1.44875 1.45456
d(C7−C9) 1.37491 1.39270 1.38942 1.40146
d(C9−C10) 1.40089 1.40195 1.39872 1.40162
d(C10−C11) 1.43241 1.45577 1.44981 1.45960

a Experimental geometries are from Ref. [38] for anthracene (electron diffraction)
and Ref. [39] for tetracene and pentacene (x-ray crystallography).
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3.3.4 Comparison of density-functional and coupled-cluster

polarizabilities for linear oligoacenes

Comparison of CCSD to four common density-functionals has been made for benzene

using the aug-cc-pVTZ basis and for naphthalene through hexacene using Sadlej

pVTZ (calculations for naphthalene and anthracene find that Sadlej pVTZ and aug-

cc-pVDZ produce nearly identical results). For benzene, naphthalene, anthracene and

pentacene we compare polarizabilities at ω = 0.0 a.u. and ω = 0.072 a.u. (632 nm).

For benzene, as seen in Table 3.5, none of the calculated static polarizabilities

fall within the experimental error bars, although an explanation for this was already

noted in [16]. The agreement with experiment for dynamic polarizabilities is much

better; however, none of the functionals can produce polarizabilities which are within

the error bars for both the planar and perpendicular values. The PBE0 value of αLL

agrees very well with CCSD and experiment, although the αNN value is underesti-

mated by ∼ 5%. The other three functionals agree well with the experimental αNN

value but exaggerate the αLL value. Only CCSD produces values which fall within

the error bars for both components of the polarizability.

In the case of naphthalene (see Table 3.6), the DFT errors for static polarizabilities

with respect to the experimental values are consistently larger than the CCSD ones.

In this case the CCSD provides the most balanced description of αLL, αMM , and

αNN quantities for ω = 0.0. For example, the discrepancy between CCSD and BLYP

values for αLL amounts to 8.64 a.u. At the same time the αLL value at the CCSD

level (166.61 a.u.) is located close to the one of the experimental value 164.6 a.u. It is

clear for naphthalene that functionals which include some exact exchange (B3LYP and

PBE0) outperform those which do not (BLYP and PBE). The role of exact exchange
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Table 3.5: Benzene dipole polarizabilities calculated with the aug-cc-pVTZ basis set
and various methods. Polarizabilities and frequencies are given in atomic units.

ω = 0.0 ω = 0.072
Method αLL αNN αLL αNN

HF 78.87 45.20 81.78 46.28
BLYP 82.79 43.76 86.27 44.86
B3LYP 81.20 43.02 84.46 44.04

PBE 82.11 43.08 85.47 44.10
PBE0 80.26 42.27 83.37 43.19
CCSD 80.26 44.51 83.12 45.48

Experiment [42]a 82.36±0.79 49.13±1.09 82.73±0.91 44.94±1.33
a Data taken from Ref. [16].

b Polarizability obtained from Buckingham effect measurements.

in polarizabilities and excited states for DFT has been noted by [34] and others. For

frequency-dependent polarizabilities (in Table 3.5 we discuss results obtained only

for ω = 0.072) discrepancies between DFT and CCSD results are bigger. A good

illustration is again provided by a difference of the BLYP and CCSD αLL values which

equals 12.26 a.u. Also the PBE0 results are significantly above the CCSD ones for

αLL polarizabilities. While for ω = 0.0 these method differ by 1.94 a.u. for ω = 0.072,

this difference reaches 3.75 a.u. A similar trend in accuracy of polarizabilities is seen

for anthracene (Table 3.7), although comparison with experimental data (even on the

CCSD level) is more problematic.

For larger oligoacenes we compare dynamic polarizabilities for pentacene using

CCSD, PBE and PBE0. All results are collected in Table 3.8. In both DFT cal-

culations, the αMM component of the dynamic polarizability is erroneous due to

approaching or crossing a pole. Consistent with the results for smaller oligoacenes,

the presence of exact exchange makes PBE0 significantly closer to CCSD than PBE,

and the error in PBE increases substantially for finite frequency.
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Table 3.6: Dipole polarizabilities of naphthalene for various levels of theory. Polariz-
abilities and frequencies are given in atomic units.

ω = 0.0 ω = 0.072
Method αLL αMM αNN αLL αMM αNN
BLYP 175.25 127.77 66.23 188.40 134.19 67.86
B3LYP 170.92 124.88 65.37 182.90 130.79 66.88

PBE 173.60 126.48 65.21 186.27 132.65 66.70
PBE0 168.55 123.11 64.37 179.89 128.71 65.73
CCSD 166.61 123.39 66.43 176.14 128.14 67.79

Experiment [44]a,b 164.6 122.8 64.8
Experiment [45]a,c 161.9 119.4 70.8

a Data taken from Ref. [40].
b Crystal refraction.

c Laser Stark spectroscopy using a static field.

Table 3.7: Dipole polarizabilities of anthracene for various levels of theory. Polariz-
abilities and frequencies are given in atomic units.

ω = 0.0 ω = 0.072
Method αLL αMM αNN αLL αMM αNN
BLYP 303.53 171.78 86.43 338.75 185.48 88.43
B3LYP 294.19 168.15 85.32 325.26 180.16 87.17

PBE 301.11 170.16 85.13 335.20 183.29 86.96
PBE0 290.11 165.91 84.03 319.48 177.18 85.71
CCSD 281.60 166.00 87.58 305.21 173.95 89.33

Method αLL αMM αNN
Experiment [43]a,c 237.54 172.76 102.57

Experiment [46]a,d 242.27 165.33 107.30

Experiment [48]b,e 367 174 154
a Data taken from Ref. [41].
b Data taken from Ref. [47].

c Cotton-Mouton effect in benzene.
d Kerr effect in benzene at 589 nm.

e Kerr effect in CCl4.
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Table 3.8: Static and dynamic polarizabilities of pentacene at different levels of theory
using the Sadlej TZ basis set. The αMM component of the dynamic polarizability
(in parentheses) is erroneous for the both PBE and PBE0 since the frequency is
greater than the first pole of the response function in the corresponding symmetry.
Polarizabilities and frequencies are given in atomic units.

ω = 0.0 ω = 0.072
Method αLL αMM αNN αLL αMM αNN

PBE 642.22 259.61 120.20 773.43 (175.85) 122.59
PBE0 603.36 254.92 118.58 704.92 (373.30) 120.77
CCSD 589.97 254.92 129.58 672.07 284.54 132.06

Literature values were used to compared to static polarizabilities for oligoacenes

n = 1−6 to determine the saturation rate with respect to ring size and to quantify the

large error in the longitudinal polarizability component. We find that the difference

between two common functionals (PBE0 and B3LYP) and CCSD is approximately

10% for n = 6, and the limited nature of the basis sets used for the DFT calculations

reported suggests that difference would be larger if the Sadlej basis set was used.

3.3.5 Accuracy of frequency-dependent polarizabilities

The accuracy of DFT polarizabilities as a function of frequency is a less explored

dimension than the size-related error. We compare both benzene and pyrene at a

number of frequencies up to the first excitation energy. The results of our calculations

are juxtaposed in Tables 3.8, 3.10 and 3.11. We find a significant overestimation of

the polarizability for pyrene, especially the planar component, while the DFT values

for benzene are fairly accurate.

At zero frequency, all three functionals examined (B3LYP, PBE, PBE0) underes-

timate the normal component of the polarizability, αNN and both B3LYP and PBE
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Table 3.9: Static dipole polarizabilities of linear oligoacenes for n = 1 − 6. The first
set of data is the polarizability tensor components and the second is the values per
ring, α̂ = α/n, indicating the level of saturation with increasing n. Polarizabilities
are given in atomic units.

CCSD/Sadlej pVTZa B3LYP/6-311G+(2d,1p)b PBE0/6-311G+(2d,2p)c

Rings αLL αMM αNN αLL αMM αNN αLL αMM αNN
1 80.57 80.57 44.66 79.38 79.38 42.97 78.75 78.75 42.65
2 166.61 123.39 66.43 168.59 121.70 63.58 166.48 120.53 63.03
3 281.60 166.00 87.58 291.56 164.63 83.83 287.07 162.97 83.07
4 423.83 209.77 108.61 447.60 209.00 103.97 439.52 206.90 102.98
5 589.97 254.92 129.58 634.65 255.01 124.00 622.40 252.90 123.00
6 776.83 301.26 150.55 849.55 302.79 143.95 831.79 300.57 142.85

Rings α̂LL α̂MM α̂NN α̂LL α̂MM α̂NN α̂LL α̂MM α̂NN
1 80.57 80.57 44.66 79.38 79.38 42.97 78.75 78.75 42.65
2 83.31 61.70 33.22 84.30 60.85 31.79 83.24 60.27 31.52
3 93.87 55.33 29.19 97.19 54.88 27.94 95.69 54.32 27.69
4 105.96 52.44 27.15 111.90 52.25 25.99 109.88 51.73 25.75
5 117.99 50.98 25.92 126.93 51.00 24.80 124.48 50.58 24.60
6 129.47 50.21 25.09 141.59 50.47 23.99 138.63 50.10 23.81

a Geometry optimized with B3LYP/cc-pVTZ.
b Geometry optimized with B3LYP/6-311G(2d,1p). All values taken from Ref. [47].
c Geometry optimized with PBE0/6-311G+(2d,2p). Values for n = 1 − 4 are from

Ref. [22].
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Table 3.10: Frequency-dependent dipole polarizabilities of benzene and the lowest
excited state of any symmetry (denoted by ωpole) at the respective levels of theory
using the Sadlej basis set. Polarizabilities and frequencies are given in atomic units.

PBE PBE0 B3LYP CCSD
ω αLL αNN αLL αNN αLL αNN αLL αNN

0.000 82.31 42.48 80.25 41.74 81.53 42.54 80.55 44.64
0.020 82.55 42.55 80.48 41.81 81.77 42.62 80.76 44.72
0.040 83.30 42.79 81.18 42.02 82.50 42.86 81.41 44.96
0.060 84.60 43.19 82.38 42.39 83.78 43.26 82.54 45.36
0.080 86.54 43.78 84.18 42.92 85.68 43.85 84.21 45.95
0.100 89.27 44.60 86.69 43.65 88.34 44.66 86.51 46.76
0.150 101.68 48.05 97.89 46.63 100.39 48.08 96.56 50.05
ωpole 0.193 0.202 0.199 0.189a

a Taken from Ref. [49].

slightly exaggerate the planar component. At ω = 0.100, all three functionals display

similar differences with respect to CCSD as for the static values. At ω = 0.150, αLL

is exaggerated on account of proximity to a pole.

For pyrene, the accuracy is far worse at all values of ω. Again, PBE0 is fairly

close to the CCSD values. However, as the frequency approaches the ultraviolet

region, the errors with respect to CCSD exceed 10% for the planar component. PBE

and B3LYP are erroneous by 20.6% and 13.4%, respectively, for ω = 0.100. The

BLYP functional was found to produce the least accurate polarizabilities of the four

functionals compared so calculations for that functional are not reported.

3.4 Conclusions

In this chapter, the first massively parallel implementation of coupled-cluster linear

response theory is applied to large aromatic molecules and comparison of both static

and dynamic dipole polarizabilities with respect to common DFT functionals is made.
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Table 3.11: Frequency-dependent dipole polarizabilities of pyrene and the lowest
excited state of any symmetry (denoted by ωpole) for the four DFT methods. Polar-
izabilities and frequencies are given in atomic units.

PBE PBE0 B3LYP CCSD
ω αLL αMM αLL αMM αLL αMM αLL αMM

0.000 299.12 217.51 290.74 210.40 294.42 213.18 285.94 210.12
0.020 301.31 218.38 292.71 211.15 296.63 214.09 287.58 210.86
0.040 308.95 221.39 299.38 213.80 303.68 216.88 292.69 213.13
0.060 323.72 226.86 311.97 218.56 317.08 221.91 301.97 217.14
0.080 350.99 235.73 333.90 226.08 340.74 229.92 316.97 223.32
0.100 411.32 250.23 375.18 237.79 386.84 242.52 341.10 232.46
ωpole 0.125 0.138 0.134 -

The BLYP and PBE functionals do not include exact-exchange, while PBE0 and

B3LYP include 25% and 20% exact-exchange, respectively. Because of the importance

of exact-exchange in maintaining the proper physical behavior of delocalized electron

distributions, the performance of the functionals for the systems considered here is

PBE0 > B3LY P > PBE > BLY P . These four functionals outperformed other

functionals considered (BP86, B3P86, OLYP) but data for these other functionals is

not reported here. These conclusions are not restricted to the molecules considered

here, but have been found to be true when many types of functional groups perturb

the aromatic ring [50].

For benzene, the CCSD/aug-cc-pVTZ level of theory is found to reproduce both

the planar and normal component of the dynamic polarizability to within experi-

mental precision, which cannot be said for any of the functionals considered. The

agreement with the static experimental values is not as good, and this is attributed

to the neglect of vibrational contributions to the polarizability, which are more im-

portant in static polarizabilities. For naphthalene, the CCSD/Sadlej pVTZ level
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of theory accurately reproduces the experimental values while common functionals

exaggerate the longitudinal component. For larger oligoacenes, comparison to gas-

phase experimental data cannot be made, although the four functionals considered all

overestimate the longitudinal component of the polarizability, with the error growing

towards 15% of the total value.

Evaluation of the frequency-dependence of the dynamic polarizability has been

made for both benzene and pyrene. For benzene, the accuracy of DFT functionals

follows the trend that PBE0 accurately reproduces the planar polarizability while

underestimating the normal component, while B3LYP and PBE are less accurate.

The deviation with respect to CCSD grows with frequency in spite of the fact that the

DFT methods reproduce the location of the first pole quite well. For pyrene, the error

with respect to CCSD grows significantly with frequency and it is clear that there is

a significant breakdown in all of the DFT methods, although again, PBE0 is the most

accurate of those considered. The magnitude of the error as a function of frequency

grows significantly from benzene to pyrene, indicating that optical properties of larger

polyaromatic hydrocarbons will be treated even less accurately by DFT methods.

Considering that the breakdown in the nonlinear polarizabilities is much greater than

the linear polarizability for conjugated systems, it is quite clear that the use of the

conventional DFT methods requires special caution in studying the nonlinear optical

properties of organic chromophores with more than a few conjugated rings.
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CHAPTER 4

COUPLED-CLUSTER CALCULATIONS FOR STATIC

AND DYNAMIC POLARIZABILITIES OF C60

This chapter has been previously published in the following article: K. Kowalski, J. R.

Hammond, W. A. de Jong and A. J. Sadlej, “Coupled-cluster calculations for static

and dynamic polarizabilities of C60,” J. Chem. Phys. 129, 226101 (2008). Copyright

2008 by the American Institute of Physics.

4.1 Introduction

Due to the role the C60 molecule plays in condensed phase studies and its possible

application as a nonlinear optical material, the properties of C60 have been intensively

studied over the last two decades. Two measurements have provided experimental

values for the static [1] and dynamic [2] (λ = 1064 nm) dipole polarizability (α). An-

toine et al. used a beam deflection technique to assess the static polarizability of the

isolated C60 molecule. The obtained value of 76.5±8 Å3 is characterized by signifi-

cant uncertainty. Ballard et al. [2] measured 79±4 Å3 for the optical polarizability

at a wavelength of 1064 nm. Calculating electric properties of C60 is a significant

challenge, which is best illustrated by the range of different theoretical estimates of

its polarizability which vary from 36 to 154 Å3 [3, 4, 5, 6].

Owing to the delocalized character of the electronic structure of C60, the proper

choice of the basis set and accurate inclusion of the correlation effects are paramount
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for obtaining reliable results for dipole polarizabilities. Ruud et al. [7] generated re-

sults of 75.1 and 76.4 Å3 in good agreement with the experimental values 76.5±8

and 79±4 Å3 for λ = ∞ and λ = 1064 nm. However, the authors employed a rather

small 6-31++G basis set and did not account for correlation effects. A later study

by Pedersen et al. [8] clearly shows the strong basis set/correlation effect dependence

of the polarizability. For example, for the static polarizability the difference between

the 6-31++G and aug-cc-pVDZ [8] is as big as 5.5 Å3 (37 a.u.). For dynamic polariz-

abilities, the differences are even larger. Due to the large size of the molecular system

very few coupled-cluster (CC) calculations have been performed for C60. Pedersen et

al. used the CC2 method [9] with an aug-cc-pVDZ basis set and the Cholesky ap-

proximation for the two-electron integrals, to obtain polarizabilities equal to 92.33 Å3

(623.70 a.u.) and 94.77 Å3 (640.15 a.u.) for λ = ∞ and λ = 1064 nm [8], respectively,

which are too high compared to experiment. These discrepancies may be caused by

the incomplete treatment of correlation effects due to singles and doubles offered by

the CC2 formalism. Moreover, the results by Pedersen et al. [8] appear to indicate that

the CC2 method combined with sufficiently flexible basis sets may overestimate the

electron correlation contribution to the dipole polarizability of C60. To our knowledge

the reported calculations are the first attempt to investigate the dipole polarizability

of C60 within the non-truncated form of the linear response CC formalism with single

and double excitations (CCSD-LR) [10, 11]. The present CCSD-LR studies provide

also an estimate of the effect of terms neglected in the CC2 method. Simultaneously,

the present calculations are carried out with property-tailored basis set suitable for

calculations of electric dipole polarizabilities, yet small enough to make these calcu-

lations feasible. This leaves the basis set choice as the main factor which determines

the accuracy of the theoretical value of the dipole polarizability of C60.
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4.2 Results

The present calculations use the recently developed reduced-size polarized basis sets [13,

14] denoted hereafter by ZPolX, where X is the element symbol. The ZPolC basis

set used in this study corresponds to the Zm3PolC basis set of Ref. [14]. The ZPolX

basis sets originate from earlier ideas [15] concerning the form of the electric-field-

dependence of basis set functions and have lead to the development of the so-called

PolX sets [16]. In comparison with PolX sets the ZPolX basis sets offer significant

reduction (by about 1/3) of the basis set size with negligible (1−2%) loss of accuracy

of the calculated polarizabilities. They are presumably the smallest basis sets which

lead to reliable theoretical data for dipole polarizabilities.

Prior to our study of C60, we checked the performance of both the LR-CCSD

method and ZPolC basis set for benzene. Despite the significantly reduced dimen-

sion, the ZPolC results are in a good agreement with those obtained with the PolC

basis set (Table 4.1). The differences between ZPolC and PolC data for static longitu-

dinal, αLL(0), and normal, αNN (0), components of the polarizability tensor amount

to 0.25 and 0.50 a.u., respectively. For the optical frequency ω = 0.072, the re-

spective numbers are 0.22 and 0.49 a.u. One should also add that the PolX basis

sets give dipole polarizabilities which are of similar accuracy as those calculated with

considerably larger aug-cc-pVTZ [17] basis sets.

The results for α(ω) (α = αXX = αY Y = αZZ) of C60 are shown in Table

4.2. Due to the size of the system, we converged all CCSD iterations to 10−4. One

may expect that the quality of our CC calculations primarily depends on the basis set

choice, assumptions concerning the geometry, and on the level of including the electron

correlation effects. The geometry dependence is not considered in this paper and for
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Table 4.1: CCSD polarizabilities (in a.u.) of benzene.

ω = 0.0 ω = 0.072
Basis set αLL αNN αLL αNN
aug-cc-pVDZ 80.08 44.85 82.94 45.85
aug-cc-pVTZ 80.21 44.47 83.09 45.45
POLC 80.51 44.61 83.43 45.66
ZPolC 80.76 45.11 83.65 46.15
Experiment 82.36 ±0.79 49.13 ±1.09 82.73 ±0.91 44.94 ±1.33

Benzene geometry as in Ref. [12]; all electrons correlated.

the sake of direct comparisons with earlier studies we have used the same geometry of

C60 as in Refs. [7, 8]. The study of the benzene molecule (Table 4.1) shows that the

ZPolC basis set performs similarly to aug-cc-pVDZ and aug-cc-pVTZ sets. Hence, by

comparing our results with the CC2 data of Pedersen et al. [8] we can estimate the

importance of terms which are not included in the CC2 formalism. The CC2 value of

α(0) for the aug-cc-pVDZ basis set is equal to 623.70 a.u. (92.33 Å3) and increases to

640.15 (94.77 Å3) for λ = 1064 nm (see Ref. [8]). Hence, for static and dynamic cases

the differences between the CC2 data of Pedersen et al. [8] and present LR-CCSD

values of α are equal to 10.13 Å3 and 11.15 Å3, respectively. This indicates that

T2-dependent terms, not included in CC2, play an important role in the evaluation

of linear response properties in C60. This conclusion is in line with the hierarchical

structure of CC methods discussed by Christiansen, Koch, and Jørgensen in Ref. [9].

The calculated LR-CCSD static polarizability of C60 is well within error bars of the

experimental value. The LR-CCSD dynamic polarizability for λ = 1064 nm is only

marginally higher (by 0.62 Å3) than the upper limit for the experimental estimate

(see Table 4.2).

All calculations were performed with our CCSD-LR implementation in NWChem [18].

The observed speedup when going from 256 to 1024 CPUs is a factor of ∼ 3.75. Indi-
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Table 4.2: Polarizabilities of C60 in Å3 (a.u.).

Wavelength (nm) CCSD/ZPolC Experiment
∞ 82.20 (555.27 a.u.) 76.5±8

1064 83.62 (564.84 a.u.) 79±4
532 88.62 (598.64 a.u.) -

C60 geometry from Ref. [7]; C 1s orbitals frozen.

vidual timings per CCSD iteration amount to 2924 and 776 seconds for 256 and 1024

CPUs, respectively (1080 basis set functions were used).

4.3 Conclusion

Using the complete form of the CCSD-LR theory and employing a perturbation-

dependent basis set (ZPol), we obtained a theoretical estimate for the polarizabilities

of C60 that fall into experimental error bars (static polarizability) or are above the

experimental error bars by 0.62 Å3. Our crude estimates indicate that the effect of

full inclusion of T2-dependent terms affects polarizabilities by 12 − 13% when the

treatment of electron correlation changes from CC2 to CCSD.
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CHAPTER 5

BENCHMARK CALCULATIONS OF DFT

FUNCTIONALS FOR THE BINDING ENERGIES AND

DIPOLE POLARIZABILITIES OF WATER CLUSTERS

5.1 Introduction

Liquid water is an ubiquitous solvent with many interesting chemical properties.

Simulations of bulk liquid water come in two varieties: first-principles molecular

dynamics simulations (FPMD) wherein the energies and forces are computed with

density function theory (DFT) and those where an empirical potential (force field)

is employed. The complexity of both types of models has increased significantly

with time. Whereas in the past FPMD with LDA and the TIP3P water model were

standard, the pursuit of greater chemical accuracy has led to models of ever increasing

complexity. FPMD can now be done with GGA or GGA hybrids and water force fields

have evolved from simple rigid-body models like TIP3P [1] to flexible models which

incorporate various physically relevant effects (see Refs. [2, 3, 4, 5] for a few examples).

The microscopic interactions between water molecules have been investigating

with high-resolution experiments on water clusters which have elucidated, among

other things, the minimum-energy structures for small clusters [6, 7]. These experi-

ments affirmed early benchmark quantum chemical studies for water clusters up to

the hexamer [8]. Over the past 20 years, the synergy between theory and experiment

has led to a detailed understanding of the competing physical effects at work, such as

72
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the competition between hydrogen bond count and conformation strain therewithin

as well as the vital role of zero-point vibrational energy in determining the minimum-

energy hexamer.

Previous investigations [9, 10] of the performance of DFT for polarizabilities con-

sidered very small molecules which are not relevant to the evaluation of functionals

for bulk properties. Subsequently, two groups considered the electric properties of

water clusters [11, 12, 13]. This paper addresses shortcomings of previous work by

considering the polarizability of water clusters at the CCSD-LR level of theory [14],

which provides highly accurate polarizability [15], yet can be applied to very large

molecular systems [16]. The role of basis set choice is evaluated by comparing results

using basis sets from the Dunning, Pople and Sadlej families. Finally, we consider

a variety of functionals (PBE0, B3LYP, X3LYP, HCTH120, Becke98, CAMB3LYP

and CAMPBE0), not all of which have been evaluated for large molecular systems.

Classic models like Hartree-Fock and MP2 are not considered since the shortcomings

of the former for polarizabilities are well-documented and the accuracy of the latter

is not sufficiently greater than DFT to justify the additional computational cost. Ad-

ditionally, neither method is relevant to one of the purposes of this paper, which is to

identify density functionals which should most accurately reproduce bulk polarization

in liquid water.

5.2 Computational details

Coupled-cluster dipole polarizabilities were computed with the NWChem [17] TCE

response property module as described in Refs. [16] and [18]. The largest CCSD-LR

calculation — (H2O)12 with aug-cc-pVDZ (516 functions) — was run on 256 nodes
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(4 cores per node) of the Chinook supercomputer with wall times per iteration of

∼ 600, ∼ 1300 and ∼ 900 seconds, respectively for the T , Λ and T (1) equations, for

a total wall time of ∼ 33 hours.

Polarizability calculations at the DFT level, including asymptotically-corrected

functionals [19], were also performed using NWChem using the approach of Autschbach

and coworkers [20]. For comparison, the (H2O)12 job with CAMPBE0/aug-cc-pVDZ

took less than an hour on 8 nodes (4 cores per node). Asymptotically-corrected func-

tionals require approximately twice the wall time as conventional GGA hybrids under

the current implementation.

Monomer polarizability calculations at the SCF, MP2, CCS, CC2 and CC3 level

of theory were performed using Dalton 2.0 [21] and Aces II (MAB) [22].

5.3 Results

In order to understand polarizabilities and binding energies of water clusters, a hierar-

chy of benchmarks have been performed. First, polarizabilities of the water monomer

were calibrated at the highest levels of theory permissible. Second, polarizabilities

and binding energies were calibrated for small clusters using CCSD and CCSD(T)

with aug-cc-pVNZ (N=D,T,Q). Third, basis sets from the Dunning, Pople and Sadlej

families were compared at the DFT level of theory for all clusters. Finally, we com-

pare polarizabilities and binding energies from DFT calculations to CCSD results.

Water cluster labeling conventions used in the figures are given in Table 5.1.

The aug-cc-pVXZ (X=D,T,Q) basis sets [23] will be abbreviated to DZ, TZ and

QZ when the usage is clear. No other basis sets will use these abbreviations.
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Table 5.1: Labeling scheme for clusters with multiple isomers. Wn=(H2O)n.

W6 b=Book W11 a=434 W20 d=Dodecahedron
c=Cage b=4412 e=Edge-sharing

y=cYclic c=443 f=Face-sharing
p=Prism d=515 c=fused Cubes

e=551
W8 d=D2d W17 i=Interior

s=S4 s=Surface

5.3.1 Benchmarking the monomer

High-level calculations which approach the feasible limit for the treatment of both

correlation and basis set were performed in order to understand the possible limi-

tations in are cluster calculations. In Table 5.2, we compare wavefunction methods

from SCF to CCSDT for Dunning’s augmented DZ and TZ basis sets as well as

CCSDTQ with just DZ. The polarizability of the water monomer has a strong de-

pendence on the treatment of both correlation and the basis set. The MP2 results

are somewhat close to those of CCSD but are clearly not a suitable replacement for

high-accuracy calculations. Other low-order methods — SCF, CCS and CC2 — are

much less accurate. The approximate triples method CC3 reproduces CCSDT to

within 0.003 a.u. and in this case appears to be a very useful method for including

triple excitations without the storage requirements of CCSDT. Lastly, the effect of

quadruples (CCSDTQ-CCSDT) is almost one-third that of triples (CCSDT-CCSD)

— -0.019 a.u. versus -0.065 a.u. — for the isotropic polarizability. While this is

interesting in the context of theoretical benchmarking, higher-order correlation is not

likely to play a significant role for larger clusters since their magnitude is dwarfed by

lower-order effects. In addition, computation of clusters — even the dimer — at the
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Table 5.2: Static dipole polarizabilities of the water monomer and the dimer. The
isotropic (αiso) and anisotropic components (αani) are reported for aug-cc-pVDZ
(DZ) and aug-cc-pVTZ (TZ) using a variety of methods.

αiso αani
Method DZ TZ DZ TZ

Monomer

SCF 8.163 8.465 1.484 1.208
MP2 9.190 9.556 0.971 0.638
CCS 8.596 8.905 1.666 1.375
CC2 9.764 10.099 0.970 0.634

CCSD 9.225 9.484 1.057 0.778
CC3 9.158 9.477 1.048 0.744

CCSDT 9.160 9.474 1.049 0.745
CCSDTQ 9.141 - 1.051 -

Dimer

SCF 16.712 17.082 3.084 2.930
MP2 19.051 - 3.524 -
CCS 17.509 17.899 2.984 2.851
CC2 20.197 20.584 3.578 3.390

CCSD 19.107 19.357 3.471 3.238
CCSDT 19.022 - 3.609 -

CCSDTQ/aug-cc-pVDZ level of theory is impossible.

As is suggested by the DZ and TZ results, none of the results in Table 5.2 are

close to being converged in the basis set. Table 5.3 presents data only at the SCF,

CCSD and CCSDT level of theory for very large basis sets. It is immediately obvious

that SCF is inadequate for both the isotropic and anisotropic components of the

polarizability, demonstrating the large role of electron correlation even for water near

the equilibrium geometry. The difference in αiso between CCSD and CCSDT appears

large with the aug-cc-pVDZ basis (0.065 au) but it drops to 0.011 a.u. for the d-aug-

cc-pVQZ basis, a trend observed previously for other small molecules [15]. For the

anisotropy, the opposite trend occurs, with the effect of triples increasing from -

0.008 a.u. with aug-cc-pVDZ to 0.046 a.u. for d-aug-cc-pVQZ. Comparison of CCSD
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Table 5.3: Comparison of SCF, CCSD and CCSDT polarizabilities for the Dunning
series of basis set.

αiso αani
Basis SCF CCSD CCSDT SCF CCSD CCSDT

aug-cc-pVDZ 8.163 9.225 9.160 1.484 1.057 1.049
aug-cc-pVTZ 8.465 9.484 9.474 1.208 0.778 0.745
aug-cc-pVQZ 8.523 9.531 9.540 1.132 0.662 0.620
aug-cc-pV5Z 8.530 9.538 9.554 1.123 0.623 0.577
aug-cc-pV6Z 8.534 9.541 - 1.117 0.608 -

d-aug-cc-pVDZ 8.535 9.789 9.725 1.032 0.448 0.445
d-aug-cc-pVTZ 8.546 9.669 9.665 1.116 0.543 0.502
d-aug-cc-pVQZ 8.540 9.593 9.604 1.115 0.578 0.532
d-aug-cc-pV5Z 8.539 9.565 - 1.114 0.589 -
t-aug-cc-pVDZ 8.533 9.785 9.722 1.033 0.436 0.432
t-aug-cc-pVTZ 8.545 9.672 9.668 1.112 0.541 0.500
t-aug-cc-pVQZ 8.540 9.593 9.605 1.114 0.578 0.531
t-aug-cc-pV5Z - 9.565 - - 0.589 -

to CCSDT for the isotropic polarizability of the water monomer indicates that the

role of triples is less than 1% and that benchmarks at the CCSD level of correlation

treatment are quite useful. Further evidence for the utility of CCSD is that the effect

of triples are less noticeable for larger molecules, such as benzene [16, 24].

The role of the basis set is even more critical for the water monomer than cor-

relation. For the singly-augmented Dunning series, the change in the polarizability,

particularly the anisotropy, is still noticeable between quadruple- and quintuple-zeta

for CCSDT. For the CCSD results out the hextuple-zeta, αiso is close to converged

but αani has not yet flattened out. The only aspect of the basis set which is observed

to converge is the augmentation level, for which double augmentation is sufficient

since the addition of a third set of diffuse functions (t-aug) has almost no effect.
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5.3.2 Benchmarking of small clusters

Because of the strong method and basis set dependence for the monomer, small

clusters were studied using high-level methods. In Table 5.4 we consider the CCSD

and CCSD(T) total energies and CCSD-LR isotropic and anisotropic polarizabilities

for aug-cc-pVNZ basis sets (N=D,T,Q) for small water clusters. As expected, the

basis set dependence of the total energies is not small, nor is the role of electron

correlation. However, the basis set dependence of the polarizabilities is quite small.

Variance with the basis set size if the anisotropic component is larger than for the

isotropic component. While the change from TZ to QZ of αani is larger than from

DZ to TZ, αiso changes negligibly in both cases for the dimer and trimer. From

these results, the use of CCSD/aug-cc-pVDZ polarizabilities to calibrate water cluster

polarizabilities is well justified.

The method dependence of the binding energies is expected to be much larger

than that of the polarizability, but when DZ and TZ are compared, the basis set

dependence appears relatively small (See Table 5.5). The difference between the DZ

and TZ SCF binding energies of the dimer, trimer, tetramer and pentamer are 0.40,

0.69, 0.58 and 0.45 kJ/mol, respectively. For the hexamer, the basis set dependence of

the binding energies varies with geometry, namely, the dimensionality of the hydrogen-

bond network. The number of hydrogen bonds in the 6 hexamers (book, cage, cyclic

and prism) are seven, eight, six and nine while the changes in the SCF binding energy

from DZ to TZ are 0.763, 1.050, 0.423 and 1.293 kJ/mol, respectively. The heptamer,

which resembles the cage hexamer, displays qualitatively similar basis set dependence

to that structure.
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Table 5.4: Comparison of basis sets for coupled-cluster energies and polarizabilities of small water clusters using
aug-cc-pVNZ basis sets. ∆E = En − nE1.

E (Hartrees) DZ TZ QZ
n CCSD CCSD(T) CCSD CCSD(T) CCSD CCSD(T)
1 -76.271643 -76.277026 -76.335784 -76.344496 -76.355826 -76.365303
2 -152.551248 -152.562649 -152.679461 -152.697425 -152.719231 -152.738720
3 -228.839165 -228.857187 -229.031697 -229.059623 -228.839165 -
4 -305.128927 -305.153637 -305.385901 -305.423802 - -

α (bohr3) CCSD/DZ CCSD/TZ CCSD/QZ
n Iso Ani Iso Ani Iso Ani
1 9.26 1.03 9.54 0.71 9.56 0.61
2 19.11 3.47 19.36 3.24 19.31 2.83
3 28.94 5.28 29.02 5.21 28.94 4.87
4 39.06 7.46 38.96 7.51 - -
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The basis set dependence of the correlated methods follow a similar trend to

the mean-field binding energies for the hexamer, albeit with the opposite sign. The

changes in the second-order (EMP2 − ESCF ) contribution to the binding energy

from DZ to TZ are -1.014, -1.144, -0.960 and -1.222 kJ/mol for the four W6 iso-

mers. The basis set dependence of the CCSD (ECCSD − EMP2) and CCSD(T)

(ECCSD(T ) − ECCSD) contributions (see Table 5.5) are significantly smaller, nearly

equal in magnitude but opposite each other in sign, and follow the same trend as the

MP2 contributions. That the CCSD and CCSD(T) contributions themselves are also

nearly equal and but opposite in sign affirms the value of previous MP2 calculations

for the binding energies of water [25].

5.3.3 Basis set evaluation for computing cluster polarizabilities

The basis set dependence of the cluster calculations was evaluated by comparing the

results with DZ and TZ basis sets. For CCSD and all six DFT functionals, the

absolute difference in the isotropic and anisotropic component of the polarizability

was less than 0.5 a.u. and generally decreased with cluster size. For the isotropic

component, the polarizability change from DZ to TZ was exclusively positive. The

difference between DZ and TZ for the decamer was 0.21, 0.14 and 0.21 au, respectively,

for B3LYP, PBE0 and B98. The effect of basis on the polarizability per molecules is

thus very small for larger clusters when using the Dunning series.

In addition to verifying that the aug-cc-pVDZ basis was sufficient for the pur-

poses of comparing methods, numerous other basis sets were evaluated using the

B3LYP and PBE0 functionals. In Figure 5.1, four common Pople basis sets [27]

(6-31+G*, 6-31++G**, 6-311+G* and 6-311++G**) are compared to aug-cc-pVQZ

(where available). The data confirms what should be well known, which is that the
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Table 5.5: Comparison coupled-cluster binding energies of small water clusters. ∆E =
En − nE1.

∆E (kJ/mol) SCF MP2-SCF CCSD-MP2 CCSD(T)-CCSD
aug-cc-pVDZ

2 -6.870 -4.340 0.624 -0.701
3 -13.711 -9.182 1.548 -1.506
4 -18.278 -11.840 2.184 -1.954
5 -19.456 -12.119 2.309 -1.994

6b -19.892 -13.456 2.417 -2.232
6c -19.330 -14.318 2.424 -2.382
6y -20.424 -11.995 2.314 -1.970
6p -19.498 -14.352 2.305 -2.406
7 -20.981 -15.268 2.580 -2.547

aug-cc-pVTZ
2 -6.466 -4.573 0.678 -0.708
3 -13.025 -9.943 1.662 -1.566
4 -17.691 -12.664 2.285 -2.004
5 -19.005 -13.035 2.404 -2.047

6b -19.129 -14.470 2.554 -2.300
6c -18.280 -15.462 2.599 -2.478
6y -20.002 -12.955 2.404 -2.025
6p -18.204 -15.574 2.492 -2.513
7 -19.824 -16.461 2.767 -2.642

Difference
2 0.404 -0.233 0.053 -0.007
3 0.686 -0.761 0.114 -0.060
4 0.587 -0.824 0.102 -0.050
5 0.451 -0.916 0.095 -0.054

6b 0.763 -1.014 0.137 -0.068
6c 1.050 -1.144 0.175 -0.095
6y 0.423 -0.960 0.090 -0.055
6p 1.293 -1.222 0.188 -0.106
7 1.157 -1.192 0.187 -0.095
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Pople family of basis sets is inadequate for computing polarizabilities. Not only do

the Pople basis sets not reproduce the magnitude of the polarizability per molecule,

which is 9.9 for the Dunning basis sets but less than 9 for all Pople basis sets, but the

qualitative trends in the relative magnitude of the polarizability for different isomers

of clusters with the same cardinality. For the hexamer, the ordering of the polar-

izability for book and cyclic isomers changes between the Pople and Dunning sets,

which is of consequence if one wishes to use the minimum polarizability principle from

conceptual DFT to try and predict the stability of various isomers. The relative or-

dering of the polarizabilities is reversed for the two isomers of W17 between the Pople

and Dunning basis sets. Similarly, the double-zeta Pople basis sets (6-31+G* and

6-31++G**) also improperly order the polarizabilities of W11 while the triple-zeta

Pople sets (6-311+G* and 6-311++G**) agree with the ordering of aug-cc-pVDZ.

Comparison of Dunning and Sadlej basis sets [26] for water clusters was less in-

teresting (see Figure 5.2). All four of the Sadlej basis sets considered (POL, HYPOL,

Z2POL, Z3POL) closely reproduced the Dunning basis set polarizabilities. The POL

and HYPOL basis sets were closer to aug-cc-pVTZ whereas Z2POL and Z3POL were

closer to aug-cc-pVDZ. The excellent agreement of POL with aug-cc-pVQZ is con-

sistent with other results (such as Ref. [16]), which of practical significance since

POL has approximately the same rank as aug-cc-pVDZ. The only downside of us-

ing the computationally less expensive POL basis set is the absence of validation of

convergence via a hierarchy of basis sets, as is available for the Dunning series.
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Figure 5.1: Evaluation of Pople basis sets for water clusters (see text for details).
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Figure 5.2: Evaluation of Sadlej basis sets for water clusters (see text for details).
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Figure 5.3: Isotropic polarizabilities of water clusters at the CCSD/aug-cc-pVDZ
(frozen core) level of theory.
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5.3.4 Comparison of density-functionals for computing cluster

polarizabilities

Figure 5.3 shows the isotropic polarizability per molecule for water clusters up to W12

for CCSD with the DZ basis set. Errors with respect to CCSD for various density-

functionals are reported in Figure 5.4. While all functionals display relatively similar

trends, the rate at which each functional reaches the asymptotic value of its percent

error with respect to CCSD varies. Both HCTH120 and B98 decrease in error rapidly

from N = 1 − 4, where as PBE0, B3LYP and X3LYP are all around their asymp-

totic error from the start. While the asymptotic error is approximately reached at

the hexamer, estimating the polarizability itself requires substantially larger clusters

due to the fluctuations with respect to geometries. Starting at the heptamer, the

polarizability per molecule is essentially flat as the cluster size increases suggesting

asymptotic values for αiso/N of ca. 9.2, 9.6, 9.7, 9.8 and 9.8 for B98, HCTH120,

PBE0, B3LYP and X3LYP, respectively. The B3LYP and X3LYP functions produce

essentially indistinguishable results for the polarizability, while the total energies are

quite different. Finally, the PBE0 functional is clearly most able to reproduce the

CCSD polarizabilities, with errors ranging from 0.17% to 0.42% for 4 ≤ N ≤ 21.

The polarizability anisotropy, whose magnitude is highly dependent on the clus-

ter geometry, is reported in Figure 5.5. Data is reported only up to N = 15 because

large clusters have a substantially larger anisotropy which obscures the trends; also,

CCSD results are only available for N ≤ 12. The CCSD anisotropy is almost ex-

clusively lower than the DFT results, the exceptions are where B98 and CCSD are

essentially identical. Except for HCTH120, the DFT functionals considered are able

to reproduce the anisotropy to within 10% of CCSD. This can be attributed the im-
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Figure 5.4: Errors (with respect to CCSD) in the isotropic polarizability per molecule
for a number of density-functionals.
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Figure 5.5: Errors (with respect to CCSD) in the anisotropic polarizability per
molecule for a number of density-functionals.
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portance of exact-exchange in computing the anisotropy, since HCTH120 is a pure

GGA functional.

5.3.5 Comparison of density-functionals for computing cluster

binding energies

The binding energy per molecule is reported for SCF, MP2, CCSD and CCSD(T)

with aug-cc-pVDZ in Table 5.6. The role of electron correlation is significant, as

indicated by the large gap between the SCF data and the other methods. However,

it is particularly interesting to note that the MP2 and CCSD(T) data points are
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almost on top of each other. As previously noted for smaller clusters, MP2 accurately

reproduces CCSD(T) for N ≤ 10 with aug-cc-pVDZ due to a near-perfect cancellation

of ∆ECCSD − ∆EMP2 and ∆ECCSD(T ) − ∆ECCSD (∆E = En − n · E1, that is,

the binding energy). This is an important counterexample to the wisdom provided

by order-by-order analysis of correlation models, which suggests that HF < MP2

< CCSD < CCSD(T) [28]. Both zeroth- and first-order terms are contained with

Hartree-Fock theory while MP2 obviously contains only second-order terms. The

CCSD approximation includes all third-order terms plus fourth-order terms in the

space of singles, doubles and quadruples, but not triples [29]. The (T) correction to

CCSD adds the missing fourth-order triples terms [30] as well as a subset of the fifth-

order terms [31, 32, 33]. It is not clear why higher-order correlation effects cancel

for waters clusters, such that ∆EMP2 ≈ ∆ECCSD(T ), but the numerical results

suggest that it is possible to get highly accurate binding energies for water without

an expensive correlation model. Because of its lower computational cost and increased

parallel scalability, it is feasible to apply MP2 with a reasonable basis set to water

clusters of sufficient size (N > 100) that it is possible to deduce bulk properties from

them.

In Table 5.7, binding energies per molecule are reported for the density-functionals

considered in this chapter. Both CAM functionals (CAMB3LYP and CAMPBE0) un-

derestimate binding and are the only functionals to do so. Of the functionals which

overestimate binding, the relative performance is HCTH120 < B3LYP < B98 <

X3LYP < PBE0. The performance of X3LYP and PBE0 is quite similar; however,

X3LYP was parameterized for water clusters whereas PBE0 contains no empirical fit-

ting parameters [34, 35]. The error in binding per molecule of PBE0 is approximately

2 kJ/mol for clusters N = 7 − 10, which corresponds to ∼ 5% error. In contrast, the
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Figure 5.6: Binding energy per molecule for the SCF, MP2, CCSD and CCSD(T)
methods with the aug-cc-pVDZ basis set.
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Figure 5.7: Error (with respect to CCSD(T)) in the binding energy per molecule for
a number of density-functionals.
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errors in MP2 are almost exclusively below 1% relative error.

A reasonable correlation is observed between the accuracy of polarizabilities and

that of binding energies if the CAM functionals are excluded. The B98 and HCTH120

functionals are not particularly good for either quantity, while PBE0 is the best for

both. CAMB3LYP is accurate for polarizabilities but poor for binding energies, while

CAMPBE0 is poor for both. The X3LYP functional is very close to PBE0 for binding

energies but nearly superimposed with B3LYP for polarizabilities. This should reveal

the relative importance of difference exchange-correlation functional components.
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5.4 Conclusions

The accuracy of six DFT functionals for static electric properties and binding energies

of water clusters has been evaluated using coupled-cluster methods. The functionals

considered were chosen from a much larger set based upon their ability to accurately

predict the polarizability of a single water molecule and/or because they are common

functionals used to simulate both water clusters and bulk water. In particular, the

HCTH class of functionals has been touted within the CPMD community as capable

of reproducing important bulk properties of water [36, 37]. However, the results

of this paper demonstrate that PBE0 is superior to the other five functionals for

both polarizabilities and binding energies, and by inference, superior to many other

functionals not considered here since many functionals not chosen are known to be

inadequate for the quantities considered. Any functional not containing some exact

(Hartree-Fock) exchange is significantly less accurate for electric properties than their

hybrid counterparts. Thus PBE0 is better than PBE, B3LYP is better than BLYP,

and so forth. The ramifications — specifically, computational cost — of employing

exact exchange in CPMD simulations are greater than in molecule simulations with

Gaussian basis functions. However, at least for simulations which intend to directly

quantify polarization, exact exchange cannot be neglected. It is quite clear that

HCTH should not be immediately adopted as a substitute for BLYP in the CPMD

community and that much more research into the development of density-functionals

is necessary.

The results for MP2, however, were very encouraging and indicate that much can

be learned about aqueous systems using this simple model for electron correlation,

provided computational resources are available to treat sufficiently large model sys-
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tems to infer bulk properties. The next important question to consider is whether or

not the accuracy of MP2 for water is confined to pure water or if it is a sufficient model

for treating ion solvation using cluster models. The polarizing effect of the solvated

ion will be significant in such a system and extensive calibration will be necessary to

determine what theoretical models are necessary to produce quantitative insight into

these systems.
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(2002); G. S. Fanourgakis, E. Aprá and S. S. Xantheas, J. Chem. Phys. 121,

2655 (2004).

[26] A. J. Sadlej, Coll. Czech. Chem. Comm. 53, 1995 (1988); A. J. Sadlej and M.

Urban, J. Mol. Struct. (THEOCHEM) 234, 147 (1991); A. J. Sadlej, Theor.



98

Chim. Acta 79, 123 (1992); A. J. Sadlej, Theor. Chim. Acta 81, 45 (1992); A.

J. Sadlej, Theor. Chim. Acta 81, 339 (1992).

[27] P. C. Hariharan and J. A. Pople, Theor. Chimica Acta 28, 213 (1973); R. Krish-

nan, J.S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys. 72, 650 (1980); M.

M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees

and J. A. Pople, J. Chem. Phys. 77, 3654 (1982); T. Clark, J. Chandrasekhar

and P. v. R. Schleyer, J. Comp. Chem. 4, 294 (1983); P. M. W. Gill, B. G.

Johnson, J. A. Pople and M. J. Frisch, Chem. Phys. Lett. 197, 499 (1992).

[28] R. J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291 (2007).

[29] R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).

[30] M. Urban, J. Noga, S. J. Cole and R. J. Bartlett, J. Chem. Phys. 83, 4041

(1985).

[31] K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, Chem. Phys.

Lett. 157, 479 (1989).

[32] K. Raghavachari, J. A. Pople, E. S. Replogle and M. Head-Gordon, J. Phys.

Chem. 94, 5579 (1990).

[33] J. F. Stanton, Chem. Phys. Lett. 281, 130 (1997).

[34] X. Xu and W. A. Goddard III, Proc. Nat. Acad. Sci. 101, 2673 (2004).

[35] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1998).

[36] M. Sprik, J. Hutter and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).



99

[37] A. D. Boese, N. L. Doltsinis, N. C. Handy and M. Sprik, J. Chem. Phys. 112,

1670 (2000).



CHAPTER 6

COUPLED-CLUSTER DYNAMIC POLARIZABILITIES

INCLUDING TRIPLE EXCITATIONS

This chapter has been previously published in the following article: J. R. Hammond,

W. A. de Jong and K. Kowalski, “Coupled-cluster dynamic polarizabilities including

triple excitations,” J. Chem. Phys. 128, 224102 (2008). Copyright 2008 by the

American Institute of Physics.

6.1 Introduction

Coupled-cluster (CC) theory [1] is one of the most successful black-box1 methods for

calculating properties of molecules. By combining a well-established hierarchy of CC

methods [2] with hierarchical basis sets [3], one can obtain high accuracy for many

molecular properties [4, 5, 6]. While CC algorithms to calculate static properties,

which are calculated using energy derivative techniques, are well-developed and read-

ily available in a number of programs, progress has been slower in the development

of closely-related response-theoretic methods for calculating dynamic properties.

It is widely accepted that including the effect of triple excitations is vital for ac-

curate results. For energies and static properties, the CCSD(T) [7] performs very

1The term “black-box” means that explicit determination of electronic configurations to be in-
cluded in the correlation treatment is not necessary, in contrast to other high-accuracy techniques
such as multi-reference configuration-interaction (MRCI) or perturbation-theory (MRPT).
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well, often providing — for nuclear configurations not too far from equilibrium ge-

ometry — accuracy at the CCSDT level when compared to experiment. Because the

perturbative treatment of triples in CCSD(T) does not provide a corresponding wave

function (or response function), it cannot be used to calculate dynamic properties.

For these calculations, the iterative approximate triples method CC3 [8] is very suc-

cessful, in part because like CCSD(T), triples amplitudes can be calculated on-the-fly.

The importance of triples for obtaining accurate dynamic polarizabilities and hyper-

polarizabilities has been demonstrated using the CC3 model [9, 10]. Recently, Gauss

and coworkers reported CCSDT polarizabilities [11] and hyperpolarizabilities [12],

but only for double-zeta basis sets.

In this paper, we report an implementation of CC linear response theory [13, 14]

within the complete manifold of single, doubles and triples (CCSDT-LR) in the spin-

orbital representation, which permits calculations using RHF, UHF and ROHF ref-

erences, in the NWChem [15] software suite. The present work reports CCSDT-LR

dynamic polarizabilities for large basis sets and is implemented as part of the general

purpose massively-parallel computational chemistry code NWChem. Using parallel

computers to perform CCSDT-LR calculations with very large basis sets, we are able

to explore a new accuracy regime for molecular properties. We focus exclusively

on electronic polarizabilities, where vibrational effects are often quite small, usually

smaller in magnitude than the errors in the purely electronic contributions. Thus,

benchmarking how accurately these can be calculated will determine how much ef-

fort should be expended towards the remaining effects. The inclusion of vibrational

effects — vibrationally averaged electric polarizabilities [17, 16] or pure vibrational

polarizabilities [18] — is an independent topic.

To benchmark CC-LR dynamic polarizabilities, the neon atom and six diatomic
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molecules (HF, N2, CO, CN, NO and O2) commonly used for benchmarking po-

larizabilities, are considered using a hierarchy of Dunning basis sets [19] with the

well-known CCSD, CC3 and CCSDT models as well as the approximate non-iterative

model known as PS(T) [20]. The PS(T) method is based upon the CCSD-LR ap-

proach except that the similarity-transformed Hamiltonian is corrected by shifting

the location of poles in an approximate way to account for the effect of triply excited

configurations. This type of correction is extremely important for dynamic polariz-

abilities because the cost of CC3 — N7 versus N6 for CCSD (N refers to the system

size) — is compounded by the number of iterations which must be performed, which

can be substantial for dynamic polarizabilities. In addition, CC3 requires additional

storage due to computation of the triples; even when done on-the-fly, the memory cost

is likely to be significant unless performance is severely compromised. In contrast, the

single non-iterative N7 step associated with PS(T) increases the accuracy of all sub-

sequent N6 CCSD-like response calculations, regardless of how many iterations are

needed, frequencies or perturbations are considered, or even the order of response the-

ory. Of course, the success of PS(T) method requires that the non-iterative correction

produce better poles than CCSD. With this in mind, benchmarking electronic polar-

izabilities are essential for understanding the utility of various approximate triples

methods and also the complex relationship between the one- and many-particle bases

employed.

6.2 Theory and computational details

The coupled-cluster wavefunction is given by the following ansatz,

|ΨCC〉 = exp(T )|Φ〉 (6.1)
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where |Φ〉 is the reference function and the cluster operator, T , is given by

T = T1 + T2 + · · · + Tn, (6.2)

where Ti represents the i-th many-body component of the exact cluster operator

T , and n refers to the total number of correlated electrons. The coupled-cluster

energy and cluster amplitudes can be defined by a nonlinear eigenvalue equation,

H|ΨCC〉 = ECC |ΨCC〉, but it is more often represented in the fully connected energy-

independent form

〈Φ
a1...an

i1...in
| exp(−T )H exp(T )|Φ〉 = 0 (6.3)

where excited configurations |Φ
a1...an

i1...in
〉,

|Φ
a1...an

i1...in
〉 = â

†
a1 . . . â

†
an

âin . . . âi1 |Φ〉 (6.4)

corresponds to the excitation manifold included in the cluster operator T . The H̄ =

exp(−T )H exp(T ) operator is referred to as the similarity transformed Hamiltonian.

Having solved the above equations for cluster amplitudes, the energy can be obtained

from the formula:

E = 〈Φ| exp(−T )H exp(T )|Φ〉 . (6.5)

This paper focuses on two common truncations of the cluster expansion, CCSD,

where T = T1 +T2, and CCSDT, where T = T1 +T2 +T3, as well as the approximate

triples model, CC3, which cannot defined solely by a T expansion. For CCSD and

CCSDT, second-order properties are calculated using the linear response function,

〈〈A; B〉〉ω =
1

2
Ĉ±ωP̂A,B〈Φ|(1 + Λ)

{[
A, T

(1)
B,ω

]
+
[[

H, T
(1)
A,ω

]
, T

(1)
B,−ω

]}
|Φ〉 (6.6)
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where Ĉ enforces time-reversal symmetry and P̂ permutes A and B. Evaluating this

quantity requires the Λ amplitudes of gradient theory and the first-order response

with respect to operators A and B at both positive and negative frequency. In the

case of dipole polarizabilities, A and B are both dipole moment operators, and the

polarizability is given by

αij(ω) = −〈〈µi; µj〉〉ω. (6.7)

For CCSD and CCSDT, Λ and response (T (1)) amplitudes are obtained by solving

〈Φ|(1 + Λ)H|Φ
a1...an

i1...in
〉 = 0 (6.8)

〈Φ
a1...an

i1...in
|[H, T

(1)
γ,ω] − ωT

(1)
γ,ω|Φ〉 = −〈Φ

a1...an

i1...in
|µγ |Φ〉, γ = x, y, z (6.9)

for the appropriate excitation manifold. In the CC3 approximation, the CCSD equa-

tions are modified by adding terms corresponding to approximate triples which can

be calculated on-the-fly from the singles and doubles amplitudes, which minimizes the

memory requirements. The reader is referred to the literature for the specific details

of CC3 [8]. In contrast to CC3, where the singles and doubles amplitudes are iterated

in the presence of approximate triples, the PS(T) method iterates only the response

amplitudes and the supplemental term adds no additional cost to the solution of the

response equations (the supplemental term itself requires non-iterative N7 work).

The implementation of the CC static/frequency-dependent polarizabilities at the

CCSDT level creates a unique opportunity to test the pole-shift (PS) technique [20].

In particular we will discuss the case of the so-called PS(T)-CCSD(m) approaches,

where the poles (excitation energies) of the CCSD linear response equations are cor-

rected by adding the non-iterative corrections due to triples to m selected excited

states. The selection rules to define the so-called m-space (or the set of excitation
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energies to be corrected) are straightforward: we consider only those low-lying dipole-

allowed excited states which are characterized either by a large value for the transition

moment or have a non-negligible contribution to the triply excited configurations.

In a general case (m ≥ 1) we can derive the following formula for the PS(T)-CCSD

first order response operator T̃
(1)
γ (ω)

T̃
(1)
γ (ω)|Φ〉 = T

(1)
γ (ω)|Φ〉 +

m∑

K=1

|RK〉
∆ω

(T )
K µ

γ
K,0

(ω − ωCCSD
K − ∆ω

(T )
K )(ω − ωCCSD

K )
. (6.10)

where T
(1)
γ (ω) is the frequency-dependent first order CCSD operator for the γ-th com-

ponent of the dipole moment. The corrections ∆ω
(T )
K account for the effect of triply

excited configurations. In the first paper (Ref. [20]) we tested the PS(T)-CCSD(m)

approaches based on the completely renormalized equation-of-motion CCSD(T) (CR-

EOM-CCSD(T)) corrections [21, 22], which offer an elegant way of constructing the

non-iterative corrections in terms of moments of EOM-CCSD equations (for details

see Ref. [23]). In addition to the CR-EOM-CCSD(T) corrections in this paper we will

also test the PS(T)-CCSD(m) formalism based on the reduced variant of CR-EOM-

CCSD(T) correction (r-CR-EOM-CCSD(T)) [24], which is derived using slightly dif-

ferent reasoning that in the case of the CR-EOM-CCSD(T) approach, namely, the

r-CR-EOM-CCSD(T) correction is derived from the embedding of the EOM-CCSD

equations in the method of moments functional constructed for the EOM-CCSDT

level of theory. The final form of the r-CR-EOM-CCSD(T) correction is:

δ
(r−CR−EOM−CCSD(T))
K =

1

DK
[〈Φ|C

†
K,1VN R̃K,3|Φ〉 + 〈Φ|C

†
K,2VN R̃K,3|Φ〉] , (6.11)

where DK represents the overlap between EOM-CCSD and trial wavefunctions, VN is
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two body part of electronic Hamiltonian in normal-ordered form and CK,1 and CK,2

operators are defined in terms of CCSD/EOM-CCSD cluster (T1, T2) and excitation

(RK,0, RK,1, RK,2) operators:

CK,1|Φ〉 = [RK,1 + RK,0T1]|Φ〉 (6.12)

CK,2|Φ〉 = [RK,2 + RK,1T1 + RK,0(T2 +
1

2
T 2

1 )]|Φ〉 . (6.13)

In the Eq.(6.11) the R̃K,3 operator is expressed using simplified form of the triply

excited EOM-CCSD moments (version II in Ref. [24]), which eliminates the need of

calculating expensive terms involving four-particle two-body integrals.

For brevity we will refer to the PS(T)-CCSD(m) approaches based on the CR-

EOM-CCSD(T) and r-CR-EOM-CCSD(T) methodologies as to PS(CR)-CCSD(m)

and PS(r-CR)-CCSD(m) (or PS(CR,m)/PS(r-CR,m) for short). We will be also

testing (as a proof of concept) the approach where the ∆ω
(T )
K correction is replaced

by the difference between EOM-CCSDT and EOM-CCSD excitation energies. In

this situation the locations of the first m-poles in the PS(T)-CCSD(m) approach

correspond to the CCSDT poles. This formalism will henceforth be referred to as

PS(CCSDT)-CCSD(m).

The NWChem [15] implementation of CCSD linear response (CCSD-LR) polariz-

abilities is described in Ref. [26], while computational issues are discussed in Ref. [27].

The CCSDT code follows the same prescription and was implemented using the Ten-

sor Contraction Engine [28], which mitigates the time-consuming task of writing

parallel code for the CC equations. The CCSDT dynamic polarizabilities are ob-

tained by solving for the CC amplitudes T1, T2 and T3, the left eigenvectors Λ1, Λ2

and Λ3, and the first-order response amplitudes, T
(1)
1 , T

(1)
2 and T

(1)
3 for each unique
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component of the dipole operator. The polarizability is evaluated using the symmet-

ric formulation of the second-derivative of the energy. Dynamic polarizabilities were

calculated using unrelaxed orbitals. All CC equations steps were converged to 10−7

or better. Some calculations were excluded due to slow convergence, which occurred

for CCSDT calculations using larger basis sets at large frequencies. In the case of

CN, higher convergence (10−9) was necessary to obtain accurate results.

All electrons were correlated for coupled-cluster calculations on Ne, HF and N2,

while the 1s core orbitals were frozen for CO, CN, NO and O2. Basis sets were

obtained from the NWChem basis set library and use the spherical form of the angular

functions. All energies, frequencies and polarizabilities are reported using atomic

units. Polarizability tensor components for linear diatomics use the notation α⊥ =

αxx = αyy and α‖ = αzz, where z is the unique axis. For the NO radical, αxx 6= αyy in

D2h symmetry, thus α⊥ = 1
2(αxx +αyy) is reported instead. The molecular geometry

parameters used in this paper are RHF = 1.7328795 bohr, RNN = 2.068 bohr,

RCO = 2.132 bohr, RCN = 1.1718 Å, RNO = 1.1718 Å and ROO = 1.20752 Å.

NWChem CC calculations were performed using various types of computer hard-

ware, from single workstations to supercomputers. The success of disk-based algo-

rithms for calculations with more than 300 spin-orbitals demonstrate that the im-

plementation described herein is not limited in utility to chemists with access to

extensive computer facilities. At the same time, no other implementation of coupled-

cluster response properties has the ability to take advantage of the rapid proliferation

of computers with hundreds or thousands of processors. As an example of the exten-

sible nature of the CCSDT codes, an approximately two-fold speedup was obtained

when doubling (256 to 512) the number of processors on a BlueGene/L system for

the HF CCSDT/d-aug-cc-pVQZ calculation. For an even smaller problem where less



108

ideal scaling is expected, CN UCCSDT/d-aug-cc-pVDZ, the iteration time decreased

by a factor 9 when the processor rank was increased from 16 to 256. These same jobs

can be run on small clusters or even single workstations, provided they are equipped

with sufficient memory or disk space, but good parallel scaling for small systems

should translate to excellent parallel performance for larger systems which can only

be run on parallel machines.

The CC3 calculations were performed using Aces II (MAB) [29].

6.3 Results

This paper reports dynamic polarizabilities at the CCSD, CC3, CCSDT and PS(T)

levels of theory for a number of small molecules using large basis sets. In particular,

Ne, HF, N2 and CO were considered because they were previously explored using post-

CCSD methods [17, 30, 31], and are common benchmarks for high-accuracy methods.

Because the NWChem implementation of coupled-cluster theory uses the spin-orbital

formalism, we also report open-shell calculations using both ROHF and UHF refer-

ences for CCSD and CCSDT dynamic polarizabilities for CN, NO and O2, which have

previously been considered by Urban and coworkers [37] and, more recently, CN was

considered by Kállay and Gauss [11]. Accurate dynamic polarizabilities have been

obtained using MRCI techniques by Spelsberg and Meyer for N2, CO and O2 [32],

but their choice of basis set prevents direct comparison.

Although most results here are presented in figures, the numerical values are

available in table form in Appendix A, along with additional benchmark data not

explicitly mentioned in the text.
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6.3.1 Ne and HF

For the neon atom, for which correlation is purely dynamic, CC3 reproduces CCSDT

dynamic polarizabilities to within 0.005 a.u. for all basis sets and frequencies con-

sidered, while CCSD is within 0.040 a.u. for all cases. The similarity of results from

all methods can be seen in Figure 6.1. Differences between the CC3 and CCSDT did

not increase substantially for larger frequencies, in part because the CC3 model very

accurately reproduces the pole structure of the linear response function [33]. The

presence of a second set of augmented functions is significantly more important than

the correlation treatment. The numerical shortcomings of CCSD with respect to CC3

and CCSDT decrease as the basis set becomes more complete. Specifically, for ω = 0.0

the difference between CCSD and CCSDT for the aug-cc-pVDZ and d-aug-cc-pVDZ

basis sets are 0.020 a.u. and 0.026 a.u., while for aug-cc-pV5Z and d-aug-cc-pV5Z the

differences are only 0.001 a.u. and 0.003 a.u., respectively. The basis set convergence

of each theory was monotonic from TZ to 5Z, from below with single augmentation

and from above with double augmentation. The results for doubly-augmented ba-

sis sets did not vary significantly with zeta-level, unlike the singly-augmented ones.

Finally, both CC3 and CCSDT agree with the experimental value [30] to within

0.001 a.u. with the d-aug-cc-pV5Z basis, and the trends suggest that this difference

would disappear at the sextuple-zeta level.

As seen in Figure 6.2, polarizabilities for the hydrogen fluoride molecule follow

similar trends to the neon atom, with the CC3 model reproducing CCSDT to within

0.005 a.u. and the differences between CCSD and CCSDT in α⊥(0) and α‖(0) drop-

ping from 0.043 a.u. and 0.058 a.u. at the aug-cc-pVDZ basis set to 0.013 a.u. and

0.009 a.u. for d-aug-cc-pVQZ. As for neon, the singly-augmented basis sets appear

to converge from below and the doubly-augmented from above, with α⊥ displaying
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Figure 6.1: The basis-set dependence of static polarizabilities of neon calculated using
CCSD, CC3 and CCSDT. The aug-cc-pVNZ (aug in the key) and d-aug-cc-pVNZ
(d-aug in the key) were employed. The nearly horizontal line represents the d-aug-
cc-pVNZ series. In both cases, the method dependence is nominal compared to the
basis set dependence.
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almost identical convergence in the basis set. In contrast, α‖ is still changing signifi-

cantly with the basis set at the 5Z level. The differences in the dynamic polarizabil-

ities with respect to CCSDT (∆α) of CCSD and CC3 increase with frequency. The

difference for CCSD is largest for aug-cc-pVDZ, decreases for both aug- and d-aug-

cc-pVTZ, then increases again at the quadruple-zeta level. The error increases as the

frequency approaches the first excited state in the appropriate symmetry; this affects

α⊥ much more than α‖. Because of the outstanding agreement of CC3 and CCSDT,

there is little purpose is reconsidering the agreement of theory and experiment for

HF, since that was done — including the vibrational effects — in Reference [17].

The results for Ne and HF suggest that for molecules dominated by dynamic

correlation, it is unnecessary to include full triples, as CC3 is more than sufficient and

can be used in conjunction with much larger basis sets because it requires substantially

less memory. Second, the basis set convergence in these systems is much more rapid for

doubly-augmented basis sets than singly-augmented ones. This is a notable exception

to the conclusion of Reference [17]: that increasing the zeta-level is more important

than augmented functions beyond the first set.

6.3.2 N2 and CO

In Table 6.1 static polarizabilities are given for CCSD, CC3, CCSDT and PS(T) [34]

for different basis sets. The nitrogen molecule displays less basis set dependence than

Ne or HF, as the aug-cc-pVTZ results are within 0.030 a.u. of those for d-aug-cc-pVQZ

for both CCSD and CC3. For static polarizabilities, both CC3 and PS(T) are excellent

approximations to CCSDT, with the latter slightly better in most cases. For example,

with the largest basis set considered, aug-cc-pVQZ, CC3 differs from CCSDT by

(0.029,0.109) while for PS(T) the difference is only (0.009,-0.015). The dynamic
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Figure 6.2: Method and basis-set dependence of both the parallel and perpendicular
components of the static polarizability tensor of HF. CC3 and CCSDT are indistin-
guishable for the perpendicular component.
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Table 6.1: Basis set dependence of static dipole polarizabilities of N2 and dynamic
polarizabilities using the aug-cc-pVQZ basis set. Calculations at the PS(T) level of
theory used m = 4 and the CR-EOM-CCSD(T) approximation (see text for details).
The n-aug-cc-pVXZ basis sets are abbreviated as naXZ in the table.

CCSD CC3a PS(CR,m = 4) CCSDT
α⊥ α‖ α⊥ α‖ α⊥ α‖ α⊥ α‖

Static
aDZ 10.003 14.610 10.065 14.910 10.065 14.740 10.054 14.814
aTZ 10.126 14.578 10.213 14.860 10.202 14.730 10.187 14.753
aQZ 10.108 14.541 10.208 14.823 10.188 14.699 10.179 14.714
daDZ 10.191 14.739 10.274 15.039 10.254 14.809 10.257 14.944
daTZ 10.153 14.604 10.246 14.888 10.217 14.708 10.219 14.781
daQZ 10.109 14.548 10.210 14.831 10.179 14.665 - -

Dynamic (aug-cc-pVDZ)
0.00 10.108 14.541 10.208 14.823 10.188 14.699 10.179 14.714
0.10 10.349 14.926 10.459 15.248 10.440 15.105 10.430 15.128
0.20 11.180 16.256 11.328 16.728 11.314 16.514 11.297 16.566
0.30 13.101 19.320 13.366 20.223 13.375 19.827 13.337 19.956
0.40 18.619 27.917 19.529 30.694 19.696 29.737 19.581 29.961

a Data for CC3/aug-cc-pVQZ is from Ref. [9].

polarizabilities of N2 using the aug-cc-pVQZ basis set (Table 6.1) show a very different

trend from Ne and HF. The differences with respect to CCSDT of CCSD and CC3

grow significantly with frequency, to (-0.962,-2.044) and (-0.052,0.733), respectively,

at ω = 0.4.

At the aug-cc-pVQZ level of theory, the PS(T) method is accurate to within

0.015 a.u. for ω = 0.0, while the CC3 method is more accurate for α⊥ values at

large frequencies but overshoots α‖ by at least 0.100 a.u. for all frequencies. Unlike

the previous cases, the difference between CCSD and CCSDT decreases only slightly,

if at all, with increased basis set. This is most likely due to the presence of strong

electron correlation effects not present in Ne or HF, although further investigation is
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necessary to understand the dependence of polarizabilities on basis set and coupled-

cluster excitation level. While the trends seen for N2 are interesting from a theoretical

perspective, they do not compel any reinterpretation of the conclusions of Ref. [9].

Carbon monoxide is similar to N2 in that it has a triple bond, but is different in

that it has a non-zero dipole moment, which has been the subject of much study [35].

While Scuseria and coworkers noted that “triples and g-type functions. . . are crucial to

obtain satisfactory agreement with experiment,” we find that the dipole polarizability

is substantially less sensitive to method and basis set, in agreement with the results

of Luis, et al. In Figure 6.2 dynamic polarizabilities of CO at the CCSD, CC3 and

CCSDT levels of theory are presented for aug-cc-pVTZ. The effect of triples on the

static polarizabilities is +0.042 a.u. for α⊥ and approximately -0.138 for α‖, by

comparing the CCSD and CCSDT results with the aug-cc-pVTZ basis. The α⊥(0.3)

is substantially in error at the CCSD level due to overestimation of the first excited

state of the corresponding symmetry. It is interesting to note that while Hartree-Fock

does not even get the sign of the dipole moment correct for CO, the uncorrelated CCS

model [36] produces polarizabilities very close to those of the correlated CC methods

employed here for all but ω = 0.3 au.

In Table 6.2 we evaluate the CC3 method and different forms of the PS(T) method

for the CO molecule using the aug-cc-pVDZ basis set. The PS(CR,m = 2) approach

experiences serious problems with adequate description of the α⊥ component espe-

cially for larger frequencies. For example, for ω = 0.3 the PS(CR,m = 2) result signif-

icantly overestimates the CCSDT one by almost 7 a.u. In turn, the PS(r-CR,m = 2)

approach for ω = 0.3 underestimates the CCSDT α value by 5.7 a.u. In contrast,

the PS(CCSDT,m = 2) approach reduces the 5.3 error of the CCSD formalism for

α⊥(ω = 0.3) down to 0.98 a.u. While not a practical method, the PS(CCSDT) re-



115

Table 6.2: Comparison of frequency-dependent dipole polarizabilities of CO with the
aug-cc-pVDZ basis set obtained with the PS(T)-CCSD(m) approach employing two
approximate triples methods and the correction due to full triples, together with the
CCSD, CC3 and CCSDT results.

PS(T,m = 2)
Frequency CCSD CC3 CR r-CR CCSDT CCSDT

α⊥ 0.00 11.618 11.685 11.694 11.619 11.659 11.663
0.10 12.100 12.194 12.202 12.102 12.154 12.168
0.20 14.169 14.423 14.442 14.166 14.304 14.371
0.30 32.238 38.041 44.478 31.778 36.513 37.489

α‖ 0.00 15.820 15.575 15.901 15.849 15.883 15.642

0.10 16.342 16.101 16.438 16.376 16.416 16.169
0.20 18.219 18.006 18.384 18.278 18.347 18.079
0.30 23.164 23.151 23.657 23.339 23.545 23.219

sults demonstrate the fundamental principle of the PS(T) approach is correct: that

the majority of the correlation effect due to triples in the linear response CC equations

is achieved by pole shifting. Obviously, the inaccuracies in PS(T) using approximate

triples are due to shortcomings in those methods for the molecule under consideration.

The experimental polarizability is reasonably well approximated by the composite

method employed in Ref. [17]. The discrepancy in the estimated ∆α = α‖ − α⊥ in

that study would decrease significantly if a new estimated value for the electronic

contribution is used. Whereas in that paper, the electronic contribution to ∆α is

3.650 a.u., we estimate it to be 3.606 a.u., which is calculated from CCSD/d-aug-cc-

pV5Z (3.790 au) plus the average of the differences between CCSD and CCSDT using

the aug-cc-pVQZ and d-aug-cc-pVTZ basis sets (-0.184 au). This value is negligibly

different from the experimental value of 3.59 au [43]. The same estimation method

for the electronic contribution to α(0.072) value would decrease the error with respect

to experiment of the value in Ref. [17] by one-third (0.007 au).
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Figure 6.3: Frequency dependence of both the parallel and perpendicular components
of the polarizability of CO using the CCSD, CC3 and CCSDT methods with the aug-
cc-pVTZ basis set.
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Figure 6.4: Basis-set dependence of both the parallel and perpendicular components
of the static polarizability of CO using the CCSD, CC3 and CCSDT methods.
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6.3.3 CN and NO

As observed by Kállay and Gauss, the effects of triple and quadruple excitations is

important for obtaining accurate results for CN, particularly at larger frequencies [11].

That study used the d-aug-cc-pVDZ basis set and a UHF reference wavefunction, and

the effect of both choices has been investigated. In Table 6.3 we compare CCSD and

CCSDT dynamic polarizabilities based upon both ROHF and UHF references at the

d-aug-cc-pVDZ and d-aug-cc-pVTZ basis sets. The difference between CCSD and

CCSDT using an ROHF reference is often more than an order of magnitude less than

with UHF. For the low frequencies, ROHF-CCSD is within 0.1 a.u. of ROHF-CCSDT

and is closer to UHF-CCSDTQ than UHF-CCSDT, although it is not clear if the UHF-

CCSDTQ result is better than the ROHF-CCSDT one. Because higher excitations

mitigate the orbital dependence of coupled-cluster calculations and improve the spin-

purity of the wavefunction, it is clear that UHF-CCSD calculations for CN are not

suitable and that ROHF-based calculations would be preferred.

The basis set dependence of ROHF-CC dynamic polarizabilities is reported in

Figure 6.5. There is almost no basis set dependence in α⊥ — the only notable

effects are seen for the largest frequencies, as is to be expected since those values are

affected by the location of the poles — while the basis set dependence of α‖ is large.

It is important to notice that the basis set dependence (DZ vs. TZ) of the parallel

component is much larger than the method dependence (CCSD vs. CCSDT), and

that neither the basis set or method are particularly important for the perpendicular

component when the ROHF reference is used.

Unfortunately, the spin-orbital implementation of CC cannot guarantee that the

ROHF-CC wavefunction is a spin eigenfunction; that requires rigorously spin-adapted

amplitude equations [37]. Spin-adapted or multireference CC-LR (see Refs. [41, 42])
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Table 6.3: Comparison of frequency-dependent dipole polarizabilities of open-shell
systems at the CCSD and CCSDT levels of theory using using UHF and ROHF
references. All results are for the d-aug-cc-pVDZ basis set.

ROHF Reference UHF Reference
CCSD CCSDT-CCSD CCSD CCSDT-CCSD

Frequency α⊥ α‖ α⊥ α‖ α⊥ α‖ α⊥ α‖

CN
0.00 16.319 26.398 -0.015 -0.049 15.878 25.587 0.333 0.680
0.01 16.472 26.458 -0.024 -0.046 15.982 25.637 0.364 0.692
0.02 17.017 26.641 -0.060 -0.037 16.335 25.789 0.486 0.730
0.03 18.377 26.963 -0.170 -0.019 17.118 26.056 0.847 0.797
0.04 22.851 27.449 -0.722 0.011 18.994 26.454 2.370 0.904

NO
0.00 9.844 15.546 0.048 -0.138 9.835 15.521 0.056 -0.115
0.05 9.922 15.699 0.052 -0.137 9.913 15.673 0.059 -0.113
0.10 10.177 16.199 0.064 -0.132 10.166 16.169 0.073 -0.106
0.15 10.707 17.228 0.096 -0.120 10.690 17.188 0.110 -0.085

O2

0.00 8.349 15.520 0.005 0.079 8.352 15.505 0.002 0.089
0.10 8.527 16.251 0.007 0.134 8.530 16.235 0.004 0.144
0.20 9.163 19.524 0.014 0.492 9.166 19.503 0.012 0.500
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Figure 6.5: Basis-set dependence of both the parallel and perpendicular components of
the static polarizability of CN with CCSD and CCSDT. Only the parallel component
is sensitive to the method and basis set, and much more so to the basis set than the
method.
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may be important for obtaining an accurate linear response function for CN, particu-

larly given its role in obtaining accurate results for the dipole moment [37]. Given the

difficulty of implementing post-CCSD coupled-cluster methods in general, it is un-

likely that a spin-adapted CCSDT or higher linear response code will become available

without the use automatic code generation [38, 39, 28] or string-based methods [40].

Until such an implementation exists, the ROHF-CCSDTQ results are likely to be the

most authoritative since they will invariably be more spin-pure than the correspond-

ing UHF results and are the highest order of CC method that can be reasonably

computed. An investigation of these phenomena using our spin-orbital CCSDTQ-LR

code is in progress.

To better understand the reference issues uncovered in the study of CN, we con-

sider the NO radical due to its similarity to both CN, N2 and CO. Both have an

approximate bond order of 2.5 but NO has a radical electron in an anti-bonding or-

bital, whereas CN has a partially occupied bonding orbital. In contrast to CN, the

dynamic polarizabilities obtained using ROHF and UHF references are quite similar

at both the CCSD and CCSDT level of theory, as reported in Table 6.3. Similar

trends were observed with both the aug-cc-pVDZ and aug-cc-pVTZ basis sets.

The experimental polarizabilities of NO are α⊥(0.072) = 9.844 a.u. and α‖(0.072)

= 15.539 a.u. [43]. We estimate α⊥(0.072) = 9.752 + 0.056 + 0.33 - 0.03 = 10.108 a.u.

and α‖(0.072) = 15.840 - 0.124 + 0.03 - 0.04 = 15.706 a.u. by adding the following

contributions: (1) CCSD/d-aug-cc-pV5Z (2) the difference between CCSDT/aug-cc-

pVTZ and CCSD/aug-cc-pVTZ (3) the core correlation and vibrational corrections

of Urban and coworkers [37]. The over-estimating in both components with respect

to experiment appears to be from the CCSD/d-aug-cc-pV5Z term since there was

significant change in the CCSD results at the 5Z and 6Z levels. The estimated the-
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Figure 6.6: Basis-set dependence of both the parallel and perpendicular components
of the static polarizability of O2 with CCSD and CCSDT.
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oretical value of α‖ becomes 15.340 when the aug-cc-pV6Z basis is used, while the

α⊥ does not change significantly. Since it is not clear whether the basis dependence

at the CCSD level is physical or a numerical artifact, we are hesitant to draw firm

conclusions as to the reliability of the theoretical estimate.

6.3.4 O2

To complete our study of dynamic polarizabilities of open-shell molecules, we consider

the oxygen molecule, a ground-state triplet. The reference dependence of dynamic po-

larizabilities of O2 (see Table 6.3) is negligible. We compare two forms of the PS(T)
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Table 6.4: Frequency-dependent dipole polarizabilities of O2 using various methods
employing an ROHF refence. The aug-cc-pVTZ basis set was used in the calculations.

CCSD PS(CR,m = 4) PS(r-CR,m = 4) CCSDT
Frequency α⊥ α‖ α⊥ α‖ α⊥ α‖ α⊥ α‖

0.000 8.038 15.192 8.068 15.445 8.043 15.139 8.050 15.234
0.100 8.188 15.894 8.228 16.310 8.193 15.809 8.203 15.983
0.200 8.714 19.034 8.776 20.212 8.713 18.812 8.740 19.429

method with CCSD and CCSDT using an ROHF reference and the aug-cc-pVTZ

basis sets in Table 6.4. To assess the accuracy of the CCSDT results, we explored

the basis set convergence with CCSD out to d-aug-cc-pV5Z (see supplemental in-

formation). The perpendicular component — where triples seem less important —

converges quickly in the d-aug-cc-pVNZ series and the effect of triples should increase

the CCSD/d-aug-cc-pVNZ limit (α⊥(0) ≈ 8.18) by less than 0.10 au. For the parallel

component, the CCSD/d-aug-cc-pVNZ limit is α‖(0) ≈ 15.26 a.u. and the difference

between CCSD and CCSDT with d-aug-cc-pVTZ is less than ∼ 0.05 au. This value

appears reasonably converged in the basis set and does not vary significantly with

frequency so that estimates for the static limit should also apply for the experimental

frequency (0.072 a.u. = 632 nm).

The O2 system can be also used the establish the accuracy of triples corrections.

For this reason we performed several simple calculations with a one-dimensional

m-space that contains the lowest state of symmetry of the corresponding dipole

moment (13Πu state for µX and µY components and 13Σ+
u state for µZ compo-

nent). Table 6.4 collects the results of various PS schemes obtained for the aug-

cc-pVTZ basis set. As shown in the table, there are relatively large discrepancies

between PS(CR,m = 4)/PS(r-CR,m = 4) and CCSDT results. This is true especially
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for the α‖ component. To understand these differences, consider the EOM-CCSD,

CR-EOM-CCSD(T), r-CR-EOM-CCSD(T), and EOM-CCSDT excitation energies of

13Σ+
u state, which are equal to 6.371, 6.064. 6.404, 6.310 eV, respectively. While

the EOM-CCSD excitation energy is very close to that of EOM-CCSDT (the CCSD

results for α‖(0.0) and α‖(0.1) are in a good agreement with their CCSDT counter-

parts), CR-EOM-CCSD(T) underestimates the EOM-CCSDT excitation energy by

0.15 eV. In turn, r-CR-EOM-CCSD(T) overestimates EOM-CCSDT excitation en-

ergy nearly by 0.1 eV. Consequently, the PS(CR,m = 4) α‖ values are consistently

above the CCSDT ones with errors equal to 0.212, 0.256 and 0.593 a.u. for ω=0.0,

0.1, 0.2, respectively, whereas the PS(r-CR) results are consistently below the CCSDT

results with errors -0.095, -0.160 and -0.584 a.u. for ω=0.0, 0.1, 0.2. This explains

why α‖ is systematically overestimated (underestimated) by the CR-EOM-CCSD(T)

(r-CR-EOM-CCSD(T)) method and illustrates the reliance of the PS(T) method on

the improvement of the poles upon inclusion of non-iterative triples corrections. In

the case of O2, a better non-iterative approximation is required to fully exploit the

PS(T) approach.

Experimental polarizabilities are α⊥(0.072) = 8.312 and α‖(0.072) = 15.728

au [43]. We estimate α⊥(0.072) = 8.276 + 0.029 - 0.02 + 0.03 = 8.315 and α‖(0.072)

= 15.621 + 0.067 - 0.03 + 0.04 = 15.698 a.u. by adding the following contributions:

(1) CCSD/d-aug-cc-pV5Z (2) the difference between CCSDT/d-aug-cc-pVTZ and

CCSD/d-aug-cc-pVTZ (3) the core correlation and vibrational corrections of Urban

and coworkers [37]. The estimated values are quite close the measured ones, par-

ticularly α⊥, and the difference for α‖ should be almost entirely due to the effect of

triples beyond the TZ basis. These values are close the MRCI values of Spelsberg and

Meyer [32], who calculated α⊥(0.072) = 8.310 and α‖(0.072) = 15.548 a.u. using a
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specially-constructed basis set, which affirms the correctness of our estimated α⊥ and

lends credence to the conclusion that additional correlation effects are responsible for

the shortcomings in α‖.

6.4 Conclusions

Benchmark coupled-cluster linear response calculations have been performed for Ne,

HF, N2, CO, CN, NO and O2 using four correlated methods (CCSD, CC3, PS(T)

and CCSDT). A few important conclusions can be drawn from these results. First,

for systems with little or no static correlation, CC3 is nearly identical to CCSDT

and the former should be used without hesitation given its marked efficiency with

respect to computational storage. For strongly correlated systems, such as N2 and

CO, both approximate triples methods are more accurate than CCSD, but on the

basis of accuracy alone, it is not always clear whether PS(T) or CC3 is better. The

former is clearly better for N2, while the latter is better for CO. The lower accuracy

of PS(T) in the case of CO is not due to the PS(T) formalism, but rather the choice

of approximate triples method used to calculate the EOM energies. Thus, with an-

other choice of method for the triples correction, the PS(T) approach may be may

be significantly more reliable in predicting response properties. This fact should pro-

vide yet another motivation for developing reliable non-iterative methods for excited

states. In that event, computational cost strongly favors PS(T). However, unless

systematic results can be achieved with a single non-iterative correction, the utility

of the PS(T) approach will be limited. Unfortunately, a comparison of PS(T) and

CC3 could not be made due to the absence of a publically-available implementation

CC3-LR polarizabilities. The challenge posed by the ROHF Fockian has not been
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explored except in the context of CC3 excited-state energies and may be a problem

for polarizabilities [44]. Given the clear superiority of the ROHF reference for open-

shell polarizabilities, it remains to be seen if the CC3 can deliver the same reliability

for radicals as it does for closed-shell molecules.

For the same cases where CC3 performs well, the error with respect to CCSDT

drops for both CCSD and CC3 as the basis set is increased. This may seem somewhat

surprising given the conventional wisdom that the contribution of electron correla-

tion increases commensurate with increasing the one-particle basis set rank. It is

important to note this result when attempting benchmark correlated methods for

polarizabilities, since a small basis may over-estimate the role of post-CCSD contri-

butions in molecules like Ne and HF. The data would suggest that in these cases one

should value a CCSD/d-aug-cc-pV5Z result over CCSDT/d-aug-cc-pVDZ one, for ex-

ample, and that benchmarking the effect of higher excitations in coupled-cluster with

double-zeta basis sets is not particularly valuable for molecules with little multiref-

erence character. In contrast, the data for N2 has little variance between correlated

methods and basis set except at large frequencies.

Despite the apparent similarity of the open-shell molecules considered — CN,

NO and O2 — the method and basis dependence of polarizabilities for these differed

greatly. Dioxygen followed a similar trend to that of HF, with almost no difference

between ROHF- and UHF-based calculations. A simple additive scheme produced

results within ∼ 0.02 a.u. of experiment, demonstrating that accurate polarizabilities

are attainable for both the open-shell systems and closed-shell ones. In contrast,

CN showed a huge discrepancy between the two Hartree-Fock references, which leads

to a substantial overestimation of the contribution from the triples. The primary

role of triples in UHF-CCSDT-LR polarizabilities is to more closely approximate the
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proper spin state and not because of higher-order correlation effects, which are not

seen in ROHF-based calculations, where the difference between CCSD and CCSDT

is smaller by more than an order of magnitude. Because of the strong effects of

reference, the conclusions of Ref. [11] should be viewed with some caution until spin-

restricted (ROHF-, PSA- or SR-) CCSDTQ-LR results reaffirm the exact role of

higher excitations.

The combination of high-level ab initio methods and powerful computers have

allowed us to explore a new regime of accuracy in molecular properties calculations.

The results of this paper demonstrate that the computational burden of CCSDT-LR

is often unnecessary, and that two alternative methods for treating triples approx-

imately can make a significant improvement over CCSD-LR. Lastly, a new compli-

cation emerges for open-shell systems: the spin-symmetry of the SCF reference can

have a substantial impact on the accuracy of computed results. Thus, despite the

additional complications of programming them by hand, ROHF-based CC-LR ap-

proaches should be favored over their UHF counterparts. The comparison of ROHF-

and UHF-based approaches for modest basis sets should be an appropriate criteria

for determining if higher-order UHF-based coupled-cluster methods can be employed.
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Phys. Rev. A 5, 50 (1972).

[2] R. J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291 (2007).

[3] T. H. Dunning Jr., J. Phys. Chem. A, 104, 9062 (2000).

[4] T. Helgaker, J. Gauss, P. Jørgensen and J. Olsen, J. Chem. Phys. 106, 6430

(1997).

[5] K. L. Bak, J. Gauss, P. Jørgensen, J. Olsen, T. Helgaker and J. F. Stanton, J.

Chem. Phys. 114, 6548 (2001).

[6] F. Paw lowski, A. Halkier, P. Jørgensen, K. L. Bak, T. Helgaker and W. Klopper,

J. Chem. Phys. 118, 2539 (2003).

[7] J. A. Pople, M. Head-Gordon and K. Raghavachari, J. Chem. Phys. 87, 5968

(1987).

[8] O. Christiansen, H. Koch, P. Jørgensen, J. Chem. Phys. 103, 7429 (1995); H.

Koch, O. Christiansen, P. Jørgensen, A. M. Sanchez de Merás and T. Helgaker,

J. Chem. Phys. 106, 1808 (1997).

[9] O. Christiansen, J. Gauss and J. F. Stanton, Chem. Phys. Lett. 292, 437 (1998).

[10] J. Gauss, O. Christiansen and J. F. Stanton, Chem. Phys. Lett. 296, 117 (1998).

128



129
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CHAPTER 7

LINEAR RESPONSE COUPLED-CLUSTER SINGLES

AND DOUBLES APPROACH WITH MODIFIED

SPECTRAL RESOLUTION OF THE SIMILARITY

TRANSFORMED HAMILTONIAN

This chapter has been previously published in the following article: K. Kowalski, J.

R. Hammond and W. A. de Jong, “Linear response coupled-cluster singles and dou-

bles approach with modified spectral resolution of the similarity transformed Hamil-

tonian,” J. Chem. Phys. 127, 164105 (2007). Copyright 2007 by the American

Institute of Physics.

7.1 Introduction

The development of theoretical methods for calculating frequency-dependent prop-

erties such as dynamic polarizabilities or hyperpolarizabilities is an important com-

ponent of the coupled-cluster (CC) formalism.[1, 2, 3, 4] Starting from seminal pa-

pers by Monkhorst and Dalgaard [5, 6] we have witnessed a steady progress both

in the theoretical development and numerical implementations of the linear response

CC theory (LR-CC). The cornerstone in the theoretical developments is marked by

generalization of the time dependent CC formalism based on the quasi-energy La-

grangians by Koch and Jørgensen [7] (see also Ref. [8] by Christiansen, Hättig and

Jørgensen), which led to a first implementations of the CCSD frequency-dependent

133
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polarizabilities and hyperpolarizabilities. [9, 10, 11] This important development

also paved the way for a number of the LR-CC formalisms to calculate vertical ex-

citation energies and ground-state properties such as CC2[12, 13] and CC3 models

[14, 15, 16, 17] (for review of these approaches see Ref. [18]). In excited-state calcu-

lations these approximations proved to be very efficient in describing the excitation

energies of singly-excited states. Soon a hierarchy of approximations was established

CC2, CCSD, CC3, CCSDT, etc. leading to increasingly more accurate vertical exci-

tation energies as well as the static and dynamic properties.[12, 16] The full family

of the LR-CC approaches, i.e., LR-CCSD, LR-CCSDT, LR-CCSDTQ, was recently

implemented by Kállay and Gauss [19] (since the deficiencies of the CCSD approach

quickly became clear, the need for methods accounting for triples was obvious). The

CC3 method was especially design to meet the conflicting needs of approximate in-

clusion of triples and computational expenses. Because the triply-excited amplitudes

in the CC3 approach can be easily expressed through the singly- and doubly- excited

amplitudes this method is similar to the CCSDT-n models,[20, 21, 22] although the

former approach is fully compatible with the linear response theory. Nowadays the

CC3 method is applied not only in excited-state calculations but also in calculations

for the frequency-dependent polarizabilities and hyperpolarizabilities [23, 24, 25, 26].

In view of success of iterative CC3 approach it is interesting to notice that a lit-

tle attention (except for the non-iterative excited-state methods of the CCSDR(3)

type [15, 27]) has been paid to develop the non-iterative approaches for static and

frequency-dependent properties. Quite naturally, one would expect that these theo-

ries should be designed through the perturbative estimates of higher order effect in

the first order response equations. Unfortunately, the typical values of the first order

response singly-excited amplitudes in the CCSD model can assume values greater
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than one, and constructing efficient perturbative estimates of triply-excited effects

may be rather challenging task.

In this paper we propose an alternative way, which is based on the modification of

the low-order linear-response equations (such as the linear response CC with singles

and doubles equations (LR-CCSD)) by correcting the location of poles by adding

corrections due to triples to CCSD (EOM-CCSD)[28, 29, 30] excitation energies.

This approach can be derived by invoking the language of second quantization and

ordinary projection techniques in configurational space, which makes this approach

similar to the sum-over-state approach discussed by Stanton and Bartlett.[31] We

hope that this method will partly fill the gap between iterative CC3 and CC2/CCSD

approaches in calculating the static/dynamic properties. Due to its N7 scaling (N

symbolically refers to the system size) it can be used to handle the systems currently

accessible by the CCSD(T)[32] like approaches for the ground state. The organization

of the paper is as follows: in Section II we derive the pole-shifted CCSD equations.

Section III discusses computational details and the results of calculations for two

benchmark systems: the N2 and FHCH3 molecules.

7.2 Theory

The linear response CC theory is based on the combination of the exponential ansatz

of CC with the time-dependent Schödinger equation. Since various linear response CC

approaches were widely discussed in the literature we refer the reader to Ref. [18] and

references therein. In this section we focus our attention only on the most widespread

approach: the linear response CC methods with singles and doubles, which utilizes

a simple parameterization of a time-dependent wavefunction in the presence of time-
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dependent external perturbation. In the most cases the time dependent perturbation

corresponds to an interaction of a given molecular system with external electric-field.

On the CCSD level, the time-dependent wavefunction can be written:

|ΨCCSD(t)〉 = e−iP (t)eT1(t)+T2(t)|Φ〉 , (7.1)

where P (t) is time-dependent phase and T1(t) and T2(t) denotes time-dependent

singly- and doubly-excited cluster operators defined through the time dependent clus-

ter amplitudes tia(t) and t
ij
ab(t) in the following way:

T1(t) =
∑

i,a

tia(t)â
†
aâi , (7.2)

T2(t) =
1

4

∑

i,j,a,b

t
ij
ab(t)â

†
aâ

†
bâ

†
j â

†
i , (7.3)

where â
†
p (âp) is the creation (annihilation) operator and indices i, j, k, . . . (a, b, c, . . .)

refer to occupied (unoccupied) spinorbitals in time-independent reference function

(usually chosen as a Hartree-Fock (HF) determinant).

Usually, the T1(t) and T2(t) operators are expanded in terms of the strength of

external time-dependent perturbation, i.e.,

Ti(t) = T
(0)
i + T

(1)
i (t) + T

(2)
i (t) + . . . , (i = 1, 2). (7.4)

The time independent (static) part T
(0)
i is obtained in standard CCSD calculations.

The higher order components of Ti(t) (or their Fourier components) can be obtained

from the variational principle applied to time averaged quasi-energy CCSD functional
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Lagrangian [8] {L}T = limT→∞
1

2T

∫ T
−T L(t)dt where

L(t) = 〈Φ| (1 + Λ1(t) + Λ2(t))

{(
H(t) − i

∂

∂t

)
eT1(t)+T2(t)

}

C
|Φ〉 , (7.5)

where the Λi(t) (i=1,2) are the one- and two-body components of the time-dependent

de-excitation operator Λ(t) and {·}C denotes that the quantity is connected (in

the diagrammatic sense). In the most common situation when the time depen-

dent perturbation corresponds to an interaction of electric dipole (µ) with oscillat-

ing external electric-field, the equations for the first-order CCSD cluster operator

T (1) = T
(1)
1 (ω) + T

(1)
2 (ω) (actually its ω-dependent Fourier component) take the

form

(Q1 + Q2)[H̄N − ω]T
(1)
γ (ω)|Φ〉 + (Q1 + Q2)e−T µγeT |Φ〉 = 0 , (γ = X, Y, Z) , (7.6)

where H̄N is a CCSD similarity transformed Hamiltonian (H̄ = e−T HeT ) in a normal

product form (H̄N = H̄ − 〈Φ|H̄|Φ〉) and T = T
(0)
1 + T

(0)
2 . The operators Q1 and

Q2 are the projection operators on the subspace spanned by all singly- (Q1) and

doubly-excited (Q2)determinants. Having solved these equations for plus and minus

ω-values one can easily calculate the dipole frequency-dependent polarizabilities

αγ,δ(ω) = −〈Φ|(1 + Λ)[e−T µδe
T , T

(1)
γ (ω)]|Φ〉

−〈Φ|(1 + Λ)[e−T µγeT , T
(1)
δ (−ω)]|Φ〉

−〈Φ|(1 + Λ)[[H̄N , T
(1)
δ (−ω)], T

(1)
γ (ω)]|Φ〉 , (7.7)

where Λ = Λ1 + Λ2 is the CCSD de-excitation operator. The accuracy of the

frequency- dependent polarizabilities calculated in this way heavily depends on the
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location of the poles of the (Q1 + Q2)H̄N (Q1 + Q2) matrix, which correspond to

the EOM-CCSD excitation energies. The authors of Ref. [12] suggested a hierarchy

of iterative CC models (CC2, CCSD, CC3, CCSDT) that provide a systematic im-

provements in accuracy of frequency-dependent properties mainly due to the better

location of the poles. Obviously, the full inclusion of triples is rather expensive pro-

cedure. So far, only the iterative methods approximately accounting for the effect of

triples such a CC3 were tested in the context of reducing the numerical cost. Un-

fortunately, the non-iterative methods for correcting the CCSD frequency-dependent

polarizabilities for the effect of triples face severe problems. One of these problems

should be attributed to the norm of the T
(1)
1 operator, whose amplitudes can easily

go beyond 1.0 value. The cases where the maximum T
(1)
1 amplitudes exceed the value

of 10.0 is not uncommon and for this reason the proper inclusion of due to triples

effects is rather a challenging task.

In this section we outline the technique that allows us to incorporate the effect

directly responsible for the changes in the locations of the EOM-CCSD poles caused

by the inclusion of triply-excited configurations. The main idea behind this is to

modify the spectral resolution of the similarity transformed Hamiltonian that enters

the linear response CCSD equations. These considerations can be easily transferred

to higher levels and higher orders of response equations of the CC formalism. In

the next Section we will be trying to establish to what extent this approximation is

justified and what kind of improvements should we expect.

The location of poles of the CCSD response theory can be identified with the EOM-

CCSD excitation energies (ωCCSD
K ). This is best seen when the spectral decomposition

of the (Q1+Q2)H̄N (Q1+Q2) matrix (exactly this matrix is diagonalized in the EOM-
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CCSD calculations), is invoked

(Q1 + Q2)H̄N (Q1 + Q2) =

Ntot∑

K=1

|RK〉ωCCSD
K 〈LK | (7.8)

where |RK〉 and 〈LK | are the right and left eigenvectors of similarity transformed

Hamiltonian H̄N in normal product form diagonalized in the space spanned by singly-

and doubly-excited configurations. The Ntot refers to the composite dimension of

subspaces composed of singly- and doubly-excited configurations.

Our goal is to improve the location of the EOM-CCSD excitation energies or

linear response CCSD poles. This can be easily achieved by adding to all (or to

some) EOM-CCSD excitation energies ωCCSD
K in Eq.(7.8) corresponding corrections

that account for missing correlation effects. Such a correction should first include

the effect of triply-excited configurations. Since its numerical cost is akin to that

of the ground-state CCSD(T) approach,[32] we believe that completely renormalized

EOM-CCSD(T) corrections (CR-EOM-CCSD(T))[3, 33]

∆ω
(T )
K = ∆ω

CR−EOM−CCSD(T)
K =

〈ΨK(3)|MK,3(2)|Φ〉

〈ΨK(3)|RKeT |Φ〉
, (7.9)

are ideally suited for this purpose, In the above formula the MK,3(2) operator cor-

responds to triply-excited moments of the EOM-CCSD equations for K-th state,[34]

whereas the RK operator represent the EOM-CCSD excitation operator RK = RK,0+

RK,1 + RK,2. The so-called trail wavefunction |ΨK(3)〉 can be defined as follows

|ΨK(3)〉 = (P + Q1 + Q2 + Q3)(RK,0 + RK,1 + RK,2 + R̃K,3)eT
(0)
1 +T

(0)
2 |Φ〉 , (7.10)

where the R̃K,3 is an approximation to the exact EOM-CCSDT RK,3 operator and
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the P and Q3 operators are the projection operators onto the reference function |Φ〉

and a subspace of all triply-excited configurations. Usually, the amplitudes defin-

ing the R̃K,3 operator are expressed in terms of the triply-excited moments (see

Refs. [3, 33] for details). As demonstrated in Refs. [35, 36], good estimates of vertical

excitation energies are obtained by adding these corrections to corresponding EOM-

CCSD energies. Alternatively, other non-iterative corrections due to triples can be

used in correcting the EOM-CCSD poles. Among them the EOM-CCSD(T̃ )[37, 38]

and CCSDR(3)[15, 27] approaches are the viable candidates. In many aspects these

methods are similar, both CR-EOM-CCSD(T) and CCSDR(3) approaches use the

EOM-CCSD amplitudes as building blocks. This fact entails some limitations in the

usage of these non-iterative approaches. The most pronounced one is the size-intensive

character of the EOM-CCSD methods. Unfortunately, the EOM-CCSD methods is

not capable of producing size-consistent results for the dissociation process that in-

volves the separation of the system into two subsystems each of those being in excited

electronic states). In contrast to the CR-EOM-CCSD(T) formalism the CCSDR(3)

corrections lead to rigorously size-intensive results (i.e.. This fact is caused by the

presence of the denominator in Eq.(7.9). On the other hand, the CR-EOM-CCSD(T)

approach includes important Q3(HNT2)CRK,2 term which is important for a proper

description of doubly-excited states. This term is missing in the CCSDR(3) as well

as in the CC3 approach.

Now, the spectral resolution of the (Q1 +Q2)...(Q1 +Q2) part of a new, redefined,

Hamiltonian (we will refer to this Hamiltonian as the augmented Hamiltonian H̃N )

takes the form

(Q1 + Q2)H̃N (Q1 + Q2) =

Ntot∑

K=1

|RK〉(ωCCSD
K + ∆ω

(T )
K )〈LK | (7.11)
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In order to get better location of the poles corresponding to the T (1)(ω) we will replace

the ((Q1 + Q2)H̄N (Q1 + Q2) matrix in Eq.(7.6) by the augmented Hamiltonian’s

matrix ((Q1 + Q2)H̃N (Q1 + Q2). However, it is rather expensive to correct all the

EOM-CCSD excitation energies. Instead we derive the criteria for a given EOM-

CCSD excitation energy to be corrected. These criteria will help us to select only

small subset of the excited states (composed of m EOM-CCSD roots, m << Ntot)

whose excitation energies will be corrected in spectral resolution (7.11). From now on

we will refer to this subspace as a m-space. It will also help us to establish a simple

relation between ((Q1 + Q2)H̃N (Q1 + Q2) and ((Q1 + Q2)H̄N (Q1 + Q2) matrices:

Q12H̃NQ12 =
m∑

K=1

|RK〉(ωCCSD
K + ∆ω

(T )
K )〈LK | +

Ntot∑

K=m+1

|RK〉ωCCSD
K 〈LK |

= Q12H̄NQ12 +

m∑

K=1

|RK〉∆ω
(T )
K 〈LK | . (7.12)

where Q12 = (Q1 + Q2).

Let us analyze the modified (or pole shifted) linear response CCSD equation

(Q1 + Q2)[ω − H̃N ]T̃
(1)
γ (ω)|Φ〉 = (Q1 + Q2)e−T µγe−T |Φ〉 (γ = X, Y, Z), (7.13)

where T̃
(1)
γ (ω) represents its solution. For simplicity we assume the easiest case

m = 1, which means that only one excitation energy corresponding to some K-th

excited state was a subject of adding the correction ∆ω
(T )
K in the spectral resolution

of the ((Q1 + Q2)H̄N (Q1 + Q2) matrix:

(Q1 + Q2)H̃N (Q1 + Q2) = (Q1 + Q2)H̄N (Q1 + Q2) + |RK〉∆ω
(T )
K 〈LK | . (7.14)
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We can easily find the inverse of (Q1 + Q2)[ω − H̃N ](Q1 + Q2) matrix once we know

the inverse of (Q1 + Q2)[ω − H̄N ](Q1 + Q2) matrix, i.e.,

[(Q1 + Q2)[ω − H̃N ](Q1 + Q2)]−1 = [(Q1 + Q2)[ω − H̄N ](Q1 + Q2)]−1 +

|RK〉
∆ω

(T )
K

(ω − ωCCSD
K − ∆ω

(T )
K )(ω − ωCCSD

K )
〈LK | (7.15)

Now, premultiplying Eq.(7.13) from the left by [(Q1 +Q2)[H̃N −ω](Q1 +Q2)]−1 and

taking advantage of Eqs.(7.6) and (7.14) we obtain a simple result:

T̃
(1)
γ (ω)|Φ〉 = T

(1)
γ (ω)|Φ〉 + |RK〉

∆ω
(T )
K µ

γ
K,0

(ω − ωCCSD
K − ∆ω

(T )
K )(ω − ωCCSD

K )
(7.16)

where µ
γ
K,0 = 〈LK |e−T µγeT |Φ〉 is the right EOM-CCSD/LR-CCSD transition dipole

moment from the ground to K-th excited state (in contrast to right transition mo-

ments the definition of the left transition moments are slightly different in EOM-

CCSD and LR-CCSD approaches). This relationship between solution of the original

LR-CCSD equation (T
(1)
γ (ω)) and solution to the pole-shifted LR-CCSD equation

(T̃
(1)
γ (ω)) makes sense only for ω 6= ωCCSD

K . This means that in forming the m-space

one should include:

- low-lying dipole-allowed excited states characterized by significant values of the

due-to-triples corrections,

- dipole-allowed excited states characterized by large values of transition moment.
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In a general case (m ≥ 1) we can derive the following formula:

T̃
(1)
γ (ω)|Φ〉 = T

(1)
γ (ω)|Φ〉 +

m∑

K=1

|RK〉
∆ω

(T )
K µ

γ
K,0

(ω − ωCCSD
K − ∆ω

(T )
K )(ω − ωCCSD

K )
. (7.17)

where excited states that enter the above relationship are chosen based on the two

criteria given above.

The most expensive part of the approximate pole shifted LR-CCSD approach (PS-

LR-CCSD(m) or for brevity PS(T)-CCSD(m), where (T) indicates that the excitation

energies of m EOM-CCSD states were corrected by adding CR-EOM-CCSD(T) or

other due to triples corrections) is associated with the CR-EOM-CCSD(T) part (see

next section for the numerical cost estimates). We believe that techniques based on

the pole shift can be naturally applied to the higher order order response equations

both for the T and Λ operators.

The PS(T)-CCSD(m) approach accounts only for the effect of the improved loca-

tion of the poles. In contrast to approximate iterative approaches accounting for the

effect of triples (the CC3 method) the PS(T)-CCSD(m) singly- and doubly-excited

amplitudes are not iterated in the presence of genuine triply-excited amplitudes. We

are aware that accommodating the effect of triples simply by shifting the location of

poles may not be always sufficient in approximating full CCSDT results. We think

that the presented algorithm along with the character of the CR-EOM-CCSD(T) cor-

rection gives us indication in what situations the PS(T)-CCSD(m) methodology has

a chance to outperform the CCSD approach. Since usually the presence of low-lying

excited states with doubly-excited component (for which the CR-EOM-CCSD(T) cor-

rections take large values) is a sign of strong correlation effects taking place in the

ground state, we expect the PS(T)-CCSD(m) formalism to work particularly well for
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the strongly correlated systems. The examples in the forthcoming section will help us

to figure out the extent of accuracy improvements of the PS(T)-CCSD(m) methods

with respect to traditional LR-CCSD approach in the context of the static/dynamic

polarizabilities calculations.

7.3 Computational details and results

Our core PS(T)-CCSD(m) algorithm was built upon the CCSD, LR-CCSD, EOM-

CCSD, and CR-EOM-CCSD(T) Tensor Contraction Engine [39, 40, 41] implementa-

tion in NWChem.[42] The structure of the PS(T)-CCSD(m) code is as follows:

• The T amplitudes are obtained in standard CCSD calculations.

• The dipole allowed excitation energies (ωCCSD
K and corresponding left (〈LK |)

and right (|RK〉) eigenvectors of H̄N are calculated in EOM-CCSD calculations.

• The CR-EOM-CCSD(T) corrections (∆ω
(T)
K ) are formed from CCSD and EOM-

CCSD amplitudes. In all our calculation we use the ”IA” variant of the CR-

EOM-CCSD(T) approach [33],

• The PS(T)-CCSD(m) equations are formed

[A− ω]xγ(ω) +

m∑

K=1

∆ω
(T)
K (l+Kxγ(ω))rK + bγ = 0 , (7.18)

where the A matrix corresponds to (Q1 +Q2)H̄N (Q1 +Q2) and the xγ(ω), bγ ,

rK (l+K) vectors correspond to (Q1 + Q2)T̃
(1)
γ |Φ〉, (Q1 + Q2)e−T µγeT |Φ〉, and

right (left) eigenvector of H̄CCSD
N , respectively. The PS(T)-CCSD(m) equations

were implemented using LR-CCSD implementation of Ref. [43] by Hammond
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et al.

All iterative steps (CCSD,EOM-CCSD, and PS(T)-CCSD(m)) are N6 steps. The

most expensive step is associated with calculating CR-EOM-CCSD(T) correction

and scales as N7. In order to reduce the scaling of CR-EOM-CCSD(T) corrections

several approximate methods can be applied. Among those, the techniques based

on the asymptotic extrapolation schemes (AES) [44] may be particularly attractive.

Other choice is to construct the CR-EOM-CCSD(T) correction from the leading T1,

T2, R1, R2 amplitudes only. The conceivable selection criterion of the leading clus-

ter/excitation amplitudes can be based on the active-space concepts.

7.3.1 Static and dynamic polarizabilities for the N2 molecule

The N2 molecule was a subject of intensive studies with various level of CC response

theory and basis sets. From Ref. [23], which discuss the effect of including triples on

the accuracies of the frequency-dependent polarizabilities, the N2 system emerges as

a one posing significant challenge for theories based on singles and doubles. All CC3

static and frequency-dependent polarizabilities were obtained with the ACES2 [45]

package. All static and dynamics CCSDT polarizabilities were obtained with our new

CCSDT property code [46].

We decided to perform the PS(T)-CCSD(m) calculations for this system for ba-

sis set small enough that the exact CCSDT/EOM-CCSDT calculations are doable.

For this purpose we chose the aug-cc-pVDZ [47] basis set. All calculations reported

in this subsection were performed using spherical representation of the d functions

and all core orbitals were kept frozen. Since the PS(T)-CCSD(m) approach heav-

ily depends on the quality of excitation energies corresponding to the symmetry
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Figure 7.1: Frequency dependent polarizability (α‖(ω)) for the N2 molecule in the

aug-cc-pVDZ basis set (see text for details).
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X,Y,Z components of the dipole moment µ operator (µX , µY , and µZ), in Table 7.1

we collected EOM-CCSD, CR-EOM-CCSD(T), and EOM-CCSDT excitation ener-

gies and transition moment values obtained on the EOM-CCSD level of theory (at

RN−N = 2.068 a.u.). All calculations were carried out using D2h symmetry. Al-

though the CR-EOM-CCSD(T) excitation energies have tendency to slightly under-

estimate the EOM-CCSDT ones, they are located invariably closer to the EOM-

CCSDT results than the EOM-CCSD excitation energies. In particular, the CR-

EOM-CCSD(T) improvements upon the EOM-CCSD results take place for states such

as 11B3u, 11B2u, 21B1u, and 31B1u, characterized by large transition moments. This

fact play a key role in understanding of a good performance of the PS(T)-CCSD(m)

approaches with suitably chosen m-states. For N2 we discuss the m=2,3,4 cases (see

Table 7.2). While m=2 case for αXX(ω) and αY Y (ω) (αXX(ω) = αY Y (ω) = α⊥(ω))

incorporates degenerate 11B3u and 11B2u states characterized by a large values of the

transition moment (0.894 a.u. on the EOM-CCSD level), for the B1u representation

(µz dipole moment) only the one state (21B1u) corresponding to a large value for

transition moments (0.975 a.u. given by the EOM-CCSD approach) is included. For

this reason we can observe a significant improvements of the α⊥(ω) for larger values

of ω. For example, the CCSD and PS(T)-CCSD(2) approaches, at ω = 0.4 yield the

errors on the order of 0.715 and 0.168 a.u., respectively, with respect to the CCSDT

results. For αZZ(ω) = α‖(ω) component these errors are bigger and equal 2.057 and

1.297 for CCSD and PS(T)-CCSD(2), nevertheless the PS(T)-CCSD(2) approach of-

fer improvements upon the CCSD results. The large error of the PS(T)-CCSD(2)

approach for larger ω values can be attributed to the lack of the 31B1u state (EOM-

CCSD transition moment is equal 1.030 a.u.) in the m-space, which is not included

by the PS(T)-CCSD(m) m = 1, 2.



148

Table 7.1: The EOM-CCSD, EOM-CCSDT, and CR-EOM-CCSD(T),IA excitation
energies (the EOM notation is omitted in the table) and EOM-CCSD transition
moments for the N2 molecule as described by the aug-cc-pVDZ basis set (RN−N =
2.068 a.u.). The 1s core orbitals were frozen. The transition moments reported for
Πu and Σ+

u states correspond to the x- and z-axis, respectively.

Excitation energy Transition moment
State CCSD CR-CCSD(T),IA CCSDT CCSD

11Πu 13.475 13.331 13.224 0.894

21Πu 13.794 13.609 13.611 0.209

31Πu 14.554 14.187 14.289 0.454

41Πu 16.741 16.376 16.470 0.350

11Σ+
u 10.730 10.364 10.560 0.000

21Σ+
u 13.261 13.116 13.146 0.975

31Σ+
u 14.907 14.536 14.549 1.030

41Σ+
u 16.701 16.502 16.431 0.333

The PS(T)-CCSD(3) and PS(T)-CCSD(4) variants lead to systematic improve-

ment of the CCSD and PS(T)-CCSD(2) results for α‖(ω) (see Fig. 7.1). This can be

seen for all ω values. For ω = 0.0 the CCSD and PS(T)-CCSD(m) (m=2,3,4) errors

with respect to the CCSDT results are as big as 0.206, 0.164, 0.079, and 0.076 a.u.,

respectively, whereas for ω = 0.4 we these errors amount to 2.057, 1.297, 0.558, and

0.543 a.u., respectively. In both cases (ω = 0.0 and ω = 0.4) the accuracies of the

PS(T)-CCSD(4) and CC3 approaches are comparable. For example, for ω = 0.0 these

methods produce 0.076 and -0.094 a.u. of error for α‖, while for ω = 0.4 analogous

error are equal to 0.543 and -0.540 a.u.
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Table 7.2: A comparison of CC frequency-dependent polarizabilities for N2 system as described by aug-cc-pVDZ
basis set (see text for details). The frequency (in Hartrees) is given at the top of each column of values.

α⊥(ω) α‖(ω)

Method 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
SCF 9.491 - - - - 14.794 - - - -

CCSD 10.004 10.237 11.044 12.934 18.527 14.608 15.002 16.368 19.568 28.963
PS(T)-CCSD(2) 10.038 10.282 11.114 13.075 19.074 14.650 15.057 16.454 19.746 29.723
PS(T)-CCSD(3) 10.057 10.307 11.151 13.143 19.266 14.735 15.165 16.612 20.027 30.462
PS(T)-CCSD(4) 10.066 10.317 11.165 13.164 19.308 14.738 15.169 16.617 20.034 30.477

CC3 10.066 10.305 11.133 13.090 19.080 14.908 15.340 16.847 20.448 31.560
CCSDT 10.054 10.293 11.125 13.097 19.242 14.814 15.237 16.711 20.224 31.020
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For the α⊥ component the overall situation is slightly different, namely the PS(T)-

CCSD(4) approach has a tendency to overestimate the CCSDT results. This trend

is apparent for all values of ω and is becoming particularly pronounced for large ω

values. For ω = 0.0 and ω = 0.4 PS(T)-CCSD(4) discrepancies reach -0.012 and

-0.066 a.u., respectively. This should be compared to -0.012 and 0.162 a.u. of error

produced by the CC3 approach.

It is also interesting to analyze how quickly the PS(T)-CCSD(m) results saturate

with a growing number (m) of excited states employed by PS(T)-CCSD(m) formalism.

For this purpose we performed PS(T)-CCSD(10) calculation employing eight low-

lying excited states for dipole allowed symmetries. For α⊥ components we included in

m-space EOM-CCSD roots with energies between 13.47 and 23.84 eV, whereas for α‖

EOM-CCSD roots with excitation energies between 10.73 and 19.57 eV falls into the

m-space. For ω =0.0, 0.1, 0.2, 0.3, and 0.4 we obtained 10.069, 10.322, 11.170, 13.171,

and 19.315 a.u. for α⊥(ω) and 14.750, 15.184, 16.636, 20.060, and 30.513 a.u. for

α‖(ω), respectively. These numbers clearly show that inclusion of the next four excited

states in the m-space has little effect on the PS(T)-CCSD(4) results. For example,

for ω = 0.4 the differences between PS(T)-CCSD(4) and PS(T)-CCSD(8) results for

α⊥(ω = 0.4) and α‖(ω = 0.4) are as small as 0.007 and 0.033 a.u. (for ω = 0.0

these discrepancies are even smaller and equal to 0.003 and 0.012 a.u. respectively).

This relatively fast saturation of the results with the growing dimensionality of the

m-space may indicate that in realistic calculations only few important states should

be incorporated in the m-space in order to get the reliable results.
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Figure 7.2: Errors (with respect to CCSDT) in the static αZZ(0) polarizability for
the N2 molecule in the aug-cc-pVDZ basis set as a function of N-N stretch.
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Table 7.3: The EOM-CCSD and CR-EOM-CCSD(T),IA excitation energies and
EOM-CCSD transition moments for the FHCH3 molecule with the aug-cc-pVDZ
basis set. All core electrons were frozen and C1 symmetry was used in all EOM-
CCSD/CR-EOM-CCSD(T),IA calculations (see text for details).

Excitation energy Transition moment
State EOM-CCSD CR-EOM-CCSD(T),IA EOM-CCSD

21A 0.956 0.888 0.055

31A 0.956 0.888 0.055

41A 5.241 4.979 1.495

51A 5.657 5.236 0.047

61A 5.657 5.236 0.047

7.3.2 Polarizabilities for stretched internuclear geometries

In many processes characterized by small gaps between the ground and the low-

lying excited states the calculations of static/dynamic CCSD polarizabilities may

be plagued by a large errors due to inadequate description of excitation energies

corresponding to these states. This situation mainly occurs when one or more bonds

are stretched. In this subsection we study these problems on two examples: (1) the

property calculations in the vicinity of the transition state of the FHCH3 system (2)

the static polarizabilities for stretched bonds in the N2 molecule. All calculations

were performed with aug-cc-pVDZ basis set [47] with core orbitals kept frozen. The

CC3 static polarizabilities were obtained with the ACES2 [45] package.

The high-level description of the molecular properties for transition state can pro-

vide very useful information for theoretical description of the laser controlled chemical

reactions (see Refs. [48, 49, 50, 51, 52] and references therein). For this reason in this

subsection we focus on the FHCH3 molecule, whose static polarizabilities were calcu-

lated using MP2 approach along the reaction path of the F+CH4 reaction systems.[48]
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The main goal of these calculations was to establish the laser-molecule interactions

as a function of the reaction coordinates. Particularly interesting situation occurs for

the transition state (TS) geometry for which dipole polarizabilities exhibit significant

peak. Our calculations were based on the transition state geometries calculated at

the QCISD(T) level of theory using 6-311++G(2df,2dp) basis set. [52] In Table 7.3

we juxtaposed CC results of TS excitation energies and corresponding transition

moments calculated at the EOM-CCSD level. The two lowest excited states with

degenerate excitation energies (21A and 31A) are well described by the EOM-CCSD

approach. The CR-EOM-CCSD(T) corrections for these states are small: -0.068 eV.

In turn, the third excited state (41A) is characterized by bigger CR-EOM-CCSD(T)

correction (-0.26 eV) and big value of the transition moment. Therefore we expect

this state to play a critical role in describing TS properties. Although the CR-EOM-

CCSD(T) corrections corresponding to the fourth and fifth excited states are quite

big (-0.42 eV) the 51A and 61A transition moments are rather small. These properties

of excited states give us a clear indication what should be included in the m-space.

While the differences between CCSD and PS(T)-CCSD(2) static polarizabilities are

small (see Table 7.4) the inclusion of the third excited state in the m-space (PS(T)-

CCSD(3)) results in a significant change for the αZZ(0) component. The difference

between PS(T)-CCSD(3) and CCSD αZZ(0) polarizabilities amounts to 1.233 a.u.

The enlargement of the m-space by adding 51A and 61A has minor effect on the

static polarizabilities. In summary, this example clearly shows how important is

the proper construction of the m-space by including the states with large transition

moments in the TS region.

Yet another situation, corresponding to breaking multiple bonds, is illustrated

on the N2 example. All calculations where performed using aug-cc-pVDZ basis set
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Table 7.4: Static CCSD and PS(T)-CCSD(3) polarizabilities for FHCH3 system as
described by the aug-cc-pVDZ basis set. The z-axis is the F-H-C axis (see Ref. [52]
for details).

Method αXX αY Y αZZ
CCSD 18.546 18.546 41.977

PS(T)-CCSD(2) 18.561 18.561 41.977
PS(T)-CCSD(3) 18.561 18.561 43.201
PS(T)-CCSD(5) 18.563 18.563 43.201

with all core orbitals kept frozen. The results for static polarizabilities calculated at

several geometries (shown in Table 7.5) ranging from 2.068 bohr to 3.00 bohr were ob-

tained with the CCSD, PS(T)-CCSD(m) (m = 2, 3, 4), CC3, and CCSDT approaches.

One can see that while the PS(T)-CCSD(m) results are in a reasonable proximity to

the CCSDT results, the CC3 results are significantly different from CCSDT ones.

This is best seen at larger RN−N distances. For example, at RN−N = 3.0 bohr

the discrepancy between CC3 and CCSDT α‖(0) polarizabilities amounts to 3.8 a.u.

This large difference should be attributed to the poor location of the excitation en-

ergies obtained on the CC3 level, which is a consequence of non-negligible doubly-

excited contributions to the wavefunctions corresponding to low-lying excited states

at stretched geometries. It is interesting to analyze in this context the performance of

the PS(T)-CCSD(m) approach for m = 2, 3, 4. In all cases we used m-lowest EOM-

CCSD states for a given symmetry representation corresponding to a given dipole

moment component. At larger RN−N distances we observe a significant increase of

the CR-EOM-CCSD(T) corrections, whose values at RN−N = 3.0 bohr became as

big as 1 − 2 eV. The inclusion of these large effects in the excitation energies lead

to an improvement of the PS(T)-CCSD(m) approaches compared to the CCSD po-

larizabilities. For example, the α‖(0) CCSDT and PS(T)-CCSD(4) differences for
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RN−N =2.068, 2.1, 2.2, 2.3, 2.5, 2.7, and 3.0 bohr are as small as 0.075, 0.078, 0.087,

0.125, 0.327, 0.614, and 0.889 a.u., respectively. These errors should be compared to

the CCSD ones: 0.205, 0.227, 0.311, 0.416, 0.694, 1.051, and 1.527 a.u. and CC3 ones:

-0.096, -0.113, -0.183, -0.289, -0.675, -1.437, and -3.797 a.u., respectively (see Fig. 7.2

). From Table 7.2 one can also see that PS(T)-CCSD(m) series is quickly converg-

ing. The best illustration is provided by the α⊥(0) at RN−N = 2.7 bohr. While the

difference between the PS(T)-CCSD(2) and CCSD results reaches 0.320 a.u., the anal-

ogous difference between PS(T)-CCSD(3) and PS(T)-CCSD(2) and PS(T)-CCSD(4)

and PS(T)-CCSD(3) are equal 0.008 and 0.003 a.u., respectively, which causes that

the PS(T)-CCSD(4) value only slightly overestimates the CCSDT one. In situation

where the PS(T)-CCSD(2) result was locate above the CCSDT one by 0.011 a.u. the

PS(T)-CCSD(4) is still very close to the CCSDT (difference equals -0.022 a.u.).

7.4 Conclusions

This paper discusses a new approach to correct the location of linear response CCSD

poles for the effect of triply-excited configurations. This generally applicable scheme,

termed the PS(T)-CCSD(m) formalism, uses the modified resolution of identity of

similarity transformed Hamiltonian that naturally occurs in the linear response CCSD

equations. In the modified expansion, selected EOM-CCSD excitation energies are

corrected by adding the non-iterative corrections due to triples. In our derivations we

formulated a simple set of .selection. rules for a given state to be corrected in the spec-

tral resolution of H̄N . Although various non-iterative approaches can be used in this

context we were particularly interested in the methods that can provide reliable results

for excited states with highly diversified structure. The natural choice was to employ
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Table 7.5: A comparison of the CC static polarizabilities as a functions of N-N inter-
nuclear stretch. The aug-cc-pVDZ basis set was used and all core electrons were kept
frozen in the calculations.

RN≡N
Method 2.068 2.1 2.2 2.3 2.5 2.7 3.0

CCSD
α⊥(0) 10.004 10.096 10.382 10.659 11.170 11.611 12.112
α‖(0) 14.608 14.931 15.950 16.980 19.035 21.016 23.675

PS(T)-CCSD(2)
α⊥(0) 10.038 10.138 10.447 10.766 11.378 11.931 12.572
α‖(0) 14.650 14.978 16.019 17.080 19.213 21.123 23.673

PS(T)-CCSD(3)
α⊥(0) 10.057 10.159 10.472 10.772 11.384 11.939 12.578
α‖(0) 14.735 15.080 16.172 17.267 19.390 21.435 24.281

PS(T)-CCSD(4)
α⊥(0) 10.066 10.166 10.484 10.785 11.403 11.942 12.583
α‖(0) 14.738 15.080 16.174 17.271 19.402 21.453 24.313

CC3
α⊥(0) 10.066 10.170 10.494 10.820 11.464 12.089 12.951
α‖(0) 14.909 15.271 16.444 17.685 20.404 23.504 28.999

CCSDT
α⊥(0) 10.054 10.154 10.468 10.777 11.368 11.901 12.522
α‖(0) 14.814 15.158 16.261 17.396 19.729 22.067 25.202
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the CR-EOM-CCSD(T) formalism, which when combined with the PS(T)-CCSD(m)

methodology reinstate the correct location of poles for the first order response ampli-

tudes T (1)(ω). As discussed in Section II we expect essential improvements for the

strongly correlated systems, where the correct location of the poles play a pivotal role

in obtaining high accuracy for the T (1)(ω)-dependent properties such as dipole polar-

izabilities (in other situations iterating singly- and doubly-excited amplitudes in the

presence of triply- excited cluster may be necessary). Our preliminary studies confirm

this premise. The PS(T)-CCSD(m) calculations on the N2 molecule and open-shell

FHCH3 system at transition state geometry convey significant improvement relative

to the CCSD results. Moreover, in order to obtain substantial improvements over the

CCSD results only few most important excited states need to be included in the m-

space. Final accuracies given by the PS(T)-CCSD(m) formalism may be contingent

upon the accuracy of the methods used for correcting the EOM-CCSD excitation en-

ergies. In the future studies we are planning to combine PS(T)-CCSD(m) approach

with other non-iterative approaches such as CCSDR(3) and other.
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CHAPTER 8

C6 COEFFICIENTS FROM COUPLED-CLUSTER LINEAR

RESPONSE THEORY

This chapter will eventually be published in the following article: J. R. Hammond

and K. Kowalski, “C6 coefficients from coupled-cluster linear response theory.”

8.1 Introduction

This chapter reports on the extension of our coupled-cluster (CC) linear response

codes [1] to the computation of C6 coefficients from imaginary-frequency polarizabili-

ties using the Casimir-Polder integral. C6 coefficients quantify the attractive van der

Waals (or dispersion) interaction used in the Lennard-Jones potential [2]:

V (r) =

[(
A12

r

)12

−

(
C6

r

)6
]

, (8.1)

where V is the potential, r is interatomic (intermolecular) distance. The A12 term1

describes the repulsion at short distance while the C6 is the lowest order term in the

expansion of the dispersion interaction. Odd-order terms (Cn for n = 7, 9, 11, . . .) are

zero for centrosymmetric species (atoms) or when averaged over all orientations of

noncentrosymmetric species (molecules) [3]. The C6 coefficient is proportional to the

1A12 is used instead of the conventional nomenclature (C12) since C12 represents the dispersion
interaction from higher-order multipole polarizabilities, even though the latter is not referred to
explicitly in the text.
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dipole-dipole polarizability (αi,j = 〈〈µi; µj〉〉 for i = x, y, z) while higher-order terms

are proportional to polarizabilities corresponding to higher multipoles (See Ref. [3]

for details).

Previously, Stanton implemented this feature using the Aces code and applied it

to atoms [4]. Subsequently, Jørgensen and coworkers computed C6 coefficients from

Cauchy moments computed with coupled-cluster response theory [5, 6]. More re-

cently, Korona and coworkers computed C6 coefficients using an approximate form of

CCSD in conjunction with density-fitting [8, 9], while Wheatley computed C6 coeffi-

cients using time-dependent CC theory [10]. This paper reports on the application of

CC response theory for computing C6 coefficients of atoms and molecules using the

complete form of the CCSD wavefunction. Numerical issues related to the solution

of the linear response equations for imaginary frequencies are investigated. We de-

rive two methods for decoupling the real- and imaginary-components of the response

equations and consider the numerical properties of each. Finally, the present imple-

mentation has been demonstrated to run on very large supercomputers, enabling the

application of the methods described herein to molecules with more than a dozen

atoms.

8.2 Theory

An overview of CC theory and its linear response extension can be found in Refs. [11,

13, 12, 14, 15, 1]). In this section, we derive the linear response equations for deter-

minating dynamic polarizabilities for an imaginary frequency and briefly recount the

connection between these quantities and C6 coefficients.
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8.2.1 Response equations for a complex frequency

The first-order response amplitudes, T (1), for frequency ω ∈ ℜ are obtained by solving

〈Φ
a1...an

i1...in
|[H, T (1)]|Φ〉 − ω〈Φ

a1...an

i1...in
|T (1)|Φ〉 = −〈Φ

a1...an

i1...in
|µ|Φ〉. (8.2)

For the general case ω = ωR + iωI with ωR, ωI ∈ ℜ, T (1) will be complex. The

complex response amplitudes can be decomposed T (1) = T
(1)
R + iT

(1)
I . Under these

conditions, the response equations can be separated a real and imaginary components,

〈Φ
a1...an

i1...in
|[H, T

(1)
R ]|Φ〉 − ωR〈Φ

a1...an

i1...in
|T

(1)
R |Φ〉 = −〈Φ

a1...an

i1...in
|µ|Φ〉

+ ωI〈Φ
a1...an

i1...in
|T

(1)
I |Φ〉 (8.3)

〈Φ
a1...an

i1...in
|[H, T

(1)
I ]|Φ〉 − ωR〈Φ

a1...an

i1...in
|T

(1)
I |Φ〉 = ωI〈Φ

a1...an

i1...in
|T

(1)
R |Φ〉. (8.4)

The real component of the complex response equations (Eq. 8.3) is identical to Eq. 8.2

except for the addition of a second b-term (the linear response equations are of the

form Ax = b), while the imaginary component (Eq. 8.4) substitutes this b-term in

place of the original b-term corresponding to the dipole operator. Thus, very little

modification of our real-frequency linear response codes [1, 24, 23, 25] is required

to calculate responses for complex frequency. These equations can be decoupled via

elimination of the imaginary component from Eqn. 8.3 or the real component in

Eqn 8.4. In the matrix notation Eqns. 8.3 and 8.4 are

(A − ωR)xR = b + ωIxI (8.5)

(A − ωR)xI = ωIxR. (8.6)
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By substituing xI = ωI(A − ωR)−1xR into Eqn. 8.5 we obtain

[(A − ωR)2 − ω2
I ]xR = (A − ωR)b = b̃. (8.7)

Alternatively, by substituing xR = ω−1
I (A − ωR)xI into Eqn. 8.5 we obtain

[(A − ωR)2 − ω2
I ]xI = ωIb. (8.8)

Once the real (imaginary) component of the response amplitudes are obtained,

Eqn. 8.6 (Eqn. 8.5) can be solved to obtain the imaginary (real) component. In

Section 8.3, we report the numerical performance of the solution of the response

equations using the two decoupling schemes: decoupled via imaginary elimination

(Eqns. 8.7 and 8.6) and decoupled via real elimination (Eqns. 8.8 and 8.5). The

coupled system of equations (Eqns. 8.5 and 8.6) was numerically insoluble for all

even the simplest chemicals systems.

8.2.2 Response function for a complex frequency

The linear response function for a coupled-cluster wavefunction is

〈〈A; B〉〉ω =
1

2
Ĉ±ωP̂A,B〈Φ|(1 + Λ)

{[
A, T

(1)
B,ω

]
+
[[

H, T
(1)
A,ω

]
, T

(1)
B,−ω

]}
|Φ〉 (8.9)

where Ĉ enforces time-reversal symmetry and P̂ permutes A and B. Evaluating

this quantity requires the evaluation of the Λ amplitudes of gradient theory and the

first-order response with respect to operators A and B at both positive and negative

frequency.

For a purely imaginary frequency (ωR = 0), the linear response function can be
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reduced to the following contributions from the real and imaginary components of

the response amplitudes,

〈〈A; B〉〉ωI
= 〈〈A; B〉〉R + 〈〈A; B〉〉I (8.10)

〈〈A; B〉〉R = P̂A,B〈Φ|(1 + Λ)
[
A, T

(1)
B,R

]
|Φ〉

+ 〈Φ|(1 + Λ)
[[

H, T
(1)
A,R

]
, T

(1)
B,R

]
|Φ〉 (8.11)

〈〈A; B〉〉I = Ĉ±ωI 〈Φ|(1 + Λ)
[[

H, T
(1)
A,I

]
, T

(1)
B,−I

]
|Φ〉 (8.12)

where T
(1)
O,R is the real component of the response amplitudes with respect to operator

O at static frequency and T
(1)
O,±I are the imaginary components of the response ampli-

tudes with respect to operator O at frequency ±ωI . The operator Ĉ±ωI symmetrizes

with respect to ωI to preserve time-reversal symmetry, while P̂A,B is the interchange

operator for property operators A and B. When ωR = 0, it follows immediately from

Eqn. 8.4 that T
(1)
O,I = −T

(1)
O,−I , so we may simplify Eq. 8.12 as

〈〈A; B〉〉I = −2 · 〈Φ|(1 + Λ)
[[

H, T
(1)
A,I

]
, T

(1)
B,I

]
|Φ〉 (8.13)

which reduces the number of response amplitudes which need to be computed by

one-third.

In the case of dipole polarizabilities, A and B are both dipole moment operators,

and the polarizability is given by

αij(iωI) = −〈〈µi; µj〉〉ωI
. (8.14)
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8.2.3 Derivation of the Casimir-Polder relation

The connection between imaginary-frequency dynamic polarizabilities and C6 coeffi-

cients can be derived using simple perturbation theory for long-range intermolecular

forces. Our treatment closely follows that of Stone [3], which is based upon the seminal

work of London [16, 17], Margenau [18], Longuet-Higgins [19] and Buckingham [20].

The second-order energy in the perturbative expansion of the intermolecular forces

between species A and species B includes the induction energy for both A and B as well

as the dispersion energy corresponding to simultaneous excitations on both species:

E(2) = UA
ind + UB

ind + UAB
disp (8.15)

where

UA
ind = −

∑

m 6=0

〈00|H ′|mA0〉〈mA0|H ′|00〉

WA
m − WA

0

(8.16)

UB
ind = −

∑

n 6=0

〈00|H ′|0nB〉〈0nB|H ′|00〉

WB
n − WB

0

(8.17)

UAB
disp = −

∑

m,n 6=0

〈00|H ′|mAnB〉〈mAnB|H ′|00〉

WA
m + WB

n − WA
0 − WB

0

(8.18)

where H ′ is the Coulomb interaction between A and B and HA
0 |mAnB〉 = WA

n |mAnB〉,

where HA
0 is non-interacting Hamiltonian for species A (and similarly for B) [3]. The

bra (|mAnB〉) and ket (|mAnB〉) states are formed from the direct-product of non-

interaction basis states for A and B, |mA〉 and |nB〉.

If we consider only the dipole-dipole term in the multipole expansion of the inter-



169

acting Hamiltonian, H ′, Eqn. 8.18 becomes

UAB
disp = −

∑

m,n 6=0

〈0A0B|µ̂A
αTαβ µ̂B

β |mn〉〈mn|µ̂A
γ Tγδµ̂

B
δ |0A0B〉

WA
m + WB

n − WA
0 − WB

0

(8.19)

= −TαβTγδ

∑

m,n 6=0

〈0A|µ̂
A
α |m〉〈m|µ̂A

γ |0A〉〈0B|µ̂B
β |n〉〈n|µ̂B

δ |0B〉

WA
m + WB

n − WA
0 − WB

0

(8.20)

= −TαβTγδ

∑

m,n 6=0

ωA
mωB

n

ωA
m + ωB

n

〈0A|µ̂
A
α |m〉〈m|µ̂A

γ |0A〉

ωA
m

×
〈0B|µ̂B

β |n〉〈n|µ̂B
δ |0B〉

ωB
n

(8.21)

where m ≡ mA, n ≡ nB , µ̂X
ξ is the ξ-component (ξ = x, y, z) of the dipole operator

for species X and ωX
i = WX

i − WX
0 (X = A, B).

Eqn. 8.20 is trivially factorizable except for the denominator, ωA
m + ωB

n . However,

the Casimir-Polder formula [21],

1

x + y
=

2

π

∫ ∞

0

xy

(x2 + z2)(y2 + z2)
dz , (x, y > 0) , (8.22)

provides a means to factorize the troublesome denominator. Upon application of the

Casimir-Polder formula, Eqn. 8.20 becomes

= −
2

π
TαβTγδ

∫ ∞

0

∑

m 6=0

ωA
m〈0A|µ̂

A
α |m〉〈m|µ̂A

γ |0A〉

(ωA
m)2 + ν2

×
∑

n 6=0

ωB
n 〈0B|µ̂B

β |n〉〈n|µ̂B
δ |0B〉

(ωB
n )2 + ν2

dν . (8.23)
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After identifying the sum-over-states representation of the dipole polarizability,

αij(ν) =
∑

m 6=0

ωn〈0|µ̂i|n〉〈n|µ̂j|0〉 + 〈0|µ̂j|n〉〈n|µ̂i|0〉

ω2
n − ν2

, (8.24)

we have

UAB
disp = −

1

2π
TαβTγδ

∫ ∞

0
αA

αγ(iν)αB
βδ(iν) dν . (8.25)

The CAB
6 coefficient is the spherically-averaged UAB

disp.

8.3 Computational Details

The equations to compute imaginary-frequency response and dynamic polarizabilities

were programmed in NWChem [22]. Eqns. 8.7 and 8.6 were implemented using the

existing linear response code [1, 23, 25] with a number of modifications, which are

described in detail in the next section. It is worth noting that all modifications were

high-level; the code to compute the residual from matrix-vector products such as Ax,

constant terms such as b or Eqns. 8.11 and 8.12 was already present. The computa-

tion of AAx was performed with y = Ax and r = Ay, even though in parallel this is

not optimal since it unnecessarily requires that the two-electron integrals be commu-

nication twice. A new implementation which eliminates this and other performance

overhead is under development.

8.3.1 Solution of Response Equations

To solved the linear response equations for a pure-imaginary frequency, the existing

DIIS solver was modified to account for the square of the Jacobian in Eqn. 8.7, that

is, the preconditioner was D(ωI)−2 rather than D(0)−1, where D(ω) is a diagonal
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matrix with matrix elements defined as Da
i (ω) = (ω + ǫi − ǫa) and Dab

ij (ω) = (ω +

ǫi + ǫj − ǫa − ǫb). For Eqn. 8.6, no such modification was necessary, i.e. D(0)−1 was

an adequate preconditioner. Of course, if the alternative substitution was employed

to decoupled the two sets of equations, the role of the modified preconditioner would

apply to Eqn. 8.8 instead.

For both the real and imaginary component of the response equations, one can use

the initial guess defined by first-order perturbation theory, although numerical results

indicate that this is not necessary for most systems at the CCSD level of theory and

improved initial guesses do not reduce the iteration count.

Table 8.1 reports the numerical performance of the solver. The imaginary com-

ponent of the response equations is relatively easy to solve and its convergence rate

does not change over a wide range of frequencies. On the other hand, the real compo-

nent converges much faster for large values of ω. The reason for this is obvious since

(A2 − ω2
I ) becomes diagonal as ω → ∞. Although we do not present results here,

the alternative decoupling scheme (Eqns. 8.5 and 8.8) leads to different convergence

characteristics and thus an optimal implementation might employ both decoupling

schemes, with the choice between the two determined by the frequency and bandgap

of the system.

8.3.2 Numerical Integration

To obtain C6 coefficients, the Casimir-Polder integral must be evaluated numerically.

Two approaches have been employed for the results herein. First, the trapezoid rule

was used to perform the integral using a larger number of grid points. The trapezoid
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Table 8.1: Performance of numerical solvers for argon with the q-aug-cc-pVQZ basis
set.

Iterations
Frequency Real Imaginary

CC-LR 20 -
0.0000000 43 0
0.0152284 26 17
1.2988506 19 15
5.8965517 11 15
27.5714286 7 15

rule leads to the following equation for the Casimir-Polder integral,

C6 ≈
3

π

N∑

i=1

f(xi+1)2 + f(xi)
2

2 · (xi+1 − xi)
. (8.26)

The second approach used was that of Figari and Magnasco [27, 28], in which the

imaginary polarizability approximated by a finite set of functions,

α(iω) ≈

M∑

j=1

aj

bj + ω2
(8.27)

for some number, M , which controls the accuracy of the fit. The Casimir-Polder in-

tegral can be evaluated analytically by virtue of the form of the fitting function. An

8-term approximation for imaginary polarizability was determined by least-squares

using the Mathematica [29] function FindFit. The Casimir-Polder integral was per-

formed analytically using Mathematica.

In the tables, results obtained via the Trapezoid rule are denoted (trap. N),

where N is the number of grid points used. Results obtained via fitting and analytic

integration are denoted (fit M), where M is the same as in Eqn. 8.27.
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8.4 Results

The C6 coefficients of nobel gas atoms have been considered previously by a number

of authors [5, 6, 7]. In Table 8.2, results are given for helium, neon and argon for

very large basis sets [26]. In all cases, the computed values are close the experimental

ones, although the agreement is not perfect. The errors are most likely due to the

omission of triply-excited amplitudes, except in the case of helium, which has only

two electrons. For helium, it is not clear why a discrepancy between theory and

experiment exists since the basis set should be nearly saturated. For neon and argon,

numerical discrepancies exist between the two methods for computing the Casimir-

Polder integral; the two values serve as an upper and lower bound for the experimental

result.
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Table 8.2: Static polarizabilities of the atom and Lennard-Jones coefficients of the dimer for nobel gas atoms with
large basis sets. All electrons were correlated for helium, whereas the frozen-core approximation was employed for
neon and argon. Pure spherical angular functions used.

CCSD DOSD Experiment
Atom Basis α C6 (trap. 100) C6 (fit 8) α C6 α C6

He

t-aug-cc-pVQZ 1.385 1.447 1.447

1.379a 1.458a 1.38b 1.47cq-aug-cc-pVQZ 1.385 1.447 1.447
t-aug-cc-pV5Z 1.383 1.444 1.443
q-aug-cc-pV5Z 1.383 1.444 1.444

Ne

t-aug-cc-pVQZ 2.680 6.593 6.296

2.669a 6.383a 2.70b 6.4cq-aug-cc-pVQZ 2.680 6.593 6.296
t-aug-cc-pV5Z 2.676 6.564 6.268
q-aug-cc-pV5Z 2.676 6.564 6.268

Ar q-aug-cc-pVQZ 11.13 65.12 62.16 11.08a 64.30a 11.07b 65c

a Ref. A. Kumar and W. J. Meath, Mol. Phys. 75, 311 (1992).
b Ref. R.R. Teachout and R. T Pack, At. Data 3, 195 (1971).

c Ref. A. Dalgarno and W.D. Davision, in Advanced Atomic and Molecular Physics 2, edited by D.R. Bates and I.
Estermann (Academic, New York, 1966).
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8.5 Conclusions

In this chapter, the theory and implementation necessary to compute imaginary-

frequency polarizabilities was developed. First, two ways of decoupling the imaginary-

frequency response equations were derived. Numerical tests were performed on the

scheme that was implemented in NWChem. Unlike past efforts by other groups [30],

the methods described here are numerically robust and have been applied to a variety

of molecules (water, benzene, guanine and cytosine [31]).

Two numerical integration schemes for the Casimir-Polder integral were tested,

but the results were not completely satisfactory. However, given the very fine fre-

quency grid employed for results presented, numerical integration errors should be

non-existant. More investigation is necessary to determine if Mathematica is not fit-

ting the imaginary-frequency polarizability correctly or if the trapezoidal quadrature

introduces systematic errors. For larger molecules where it is not feasible to compute

more than a dozen frequency points, a highly robust numerical integration scheme

must be developed.
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CHAPTER 9

PARALLEL COMPUTATION OF COUPLED-CLUSTER

HYPERPOLARIZABILITIES

This chapter will soon be published in the following article: J. R. Hammond and K.

Kowalski, “Parallel computation of coupled-cluster hyperpolarizabilities,” J. Chem.

Phys. Copyright 2009 by the American Institute of Physics.

9.1 Introduction

The rational design of organic nonlinear optical materials is of fundamental interest

to chemists due to their applications in telecommunications and other application

areas [1]. In order for such rational design to be aided by computational tools, the-

oretical models which are capable of accurately predicting the measured properties

must be available at reasonable computational cost. Numerous factors must be ad-

dressed in simulating nonlinear optical materials in their native environment; this

paper seeks to address the two factors which rest exclusively within the scope of

quantum chemistry: the treatment of electron correlation and the choice of atomic

basis set. Other important factors which require careful consideration are the geom-

etry — both the ground-state configuration and fluctuations about it, solvent and

the presence of additional chromophores, finite temperature, and the character of the

incident light which perturbs the molecule. Within the context of quantum chemistry,

none of these factors can be addressed until a satisfactory level of approximation for
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the gas-phase electric properties at the equilibrium geometry is available. For non-

linear optical properties, finding an computationally tractable approximation which

delivers even semi-quantitative results is a significant challenge. In spite of 30 years

of progress in the area of ab initio molecular property calculations [2, 3, 4, 5, 6],

successful application of these methods is far from routine, even for a molecule as

simple as HF [7].

In this paper, we apply recently developed parallel quadratic response function-

ality at the coupled-cluster (CC) level of theory to four prototypical molecules which

can be used to benchmark quantum chemical methods in their ability to compute the

first hyperpolarizability of a molecule. For computational efficiency, only single and

double excitations were included with CC (CCSD). The CCSD model is an excellent

compromise in terms of computational cost (relatively speaking, of course) since it in-

cludes an iterative treatment of electron correlation which has previously been shown

to be quite accurate for linear response electric properties of large molecules [8] but

is tractable for molecules with over 1000 orbitals using supercomputers [9], whereas

the limit for methods storing triple excitations [10] is around 200 orbitals, even when

using a supercomputer [11]. In addition, only static hyperpolarizabilities have been

computed to save time and because such data is extremely useful when comparing

approximate computational methods since the development of response codes often

lags well behind the code developed to calculate the ground-state energy, from which

static properties can be calculated using the finite-field technique.
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9.2 Theory and computational details

For the sake of general discussion, in this section we present only basic tenets of the

CC response theory applied to the third-order electric properties (for more detailed

discussion see Refs. [12, 13] and Refs. [14, 15, 16, 17, 18, 19]). The first hyperpolar-

izability is calculated using the quadratic response function,

〈〈A; B, C〉〉 = P̂ABC
{
〈Φ|(1 + Λ)

[[
A, T

(1)
B

]
, T

(1)
C

]
|Φ〉

+ 〈Φ|Λ
(1)
A

[[
H, T

(1)
B

]
, T

(1)
C

]
|Φ〉

+ 〈Φ|(1 + Λ)
[[[

H, T
(1)
A

]
, T

(1)
B

]
, T

(1)
C

]
|Φ〉

+ 〈Φ|Λ
(1)
C

[
A, T

(1)
B

]
|Φ〉
}

, (9.1)

where P̂ enforces the appropriate permutation symmetry of the A, B and C com-

ponents. Evaluating this quantity requires the evaluation of the cluster amplitudes

T , the Λ amplitudes (Lagrange multipliers) of gradient theory and the first-order

response of both T and Λ with respect to operators A, B and C.

When the dipole moment coincides with the j-axis, we have

β‖ =
3

5
βj =

1

5

∑

i=x,y,z

(
βiij + βiji + βjii

)
, (9.2)

or in the general case,

β‖ =
3

5|µ|

∑

i,j=x,y,z

βiijµj , (9.3)

where

βijk = 〈〈µi; µj , µk〉〉 . (9.4)
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For ω = 0, the zeroth-order cluster operator (T ), the zeroth-order Lagrange multi-

pliers (Λ(0)), first-order cluster amplitudes (T (1)), and first-order Lagrange multipliers

(Λ(1)) are obtained by solving

0 = 〈Φ
a1...an

i1...in
|H|Φ〉 (9.5)

0 = 〈Φ|(1 + Λ)H|Φ
a1...an

i1...in
〉 (9.6)

0 = 〈Φ
a1...an

i1...in
|[H, T

(1)
γ ]|Φ〉 + 〈Φ

a1...an

i1...in
|µγ |Φ〉 (9.7)

0 = 〈Φ|Λ
(1)
γ H|Φ

a1...an

i1...in
〉 + 〈Φ|(1 + Λ)[H, T

(1)
γ ]|Φ

a1...an

i1...in
〉

+ 〈Φ|(1 + Λ)µγ |Φ
a1...an

i1...in
〉 (9.8)

for the excitation manifold (Φ
a1...an

i1...in
) used to define the cluster and Λ operators and

appropriate components of the dipole moment operator, µγ, where γ = x, y, z in the

nonsymmetric case. The generalization of the quadratic response equations to the

dynamic case (ω 6= 0) is trivial [19]. As always the similarity transformed Hamiltonian

(H) and dipole moment (µγ) operators are defined as follow:

H = exp(−T )H exp(T ) (9.9)

µγ = exp(−T )µγ exp(T ) (9.10)

where γ = x, y, x. In CCSD, all cluster and Λ operators used to define zeroth and first

order of response include singly and doubly excited components, i.e., T = T1 + T2,

Λ = Λ1 + Λ2, T
(1)
γ = T

(1)
γ,1 + T

(1)
γ,2 , and Λ

(1)
γ = Λ

(1)
γ,1 + Λ

(1)
γ,2.

The response equations of Eqn. 9.8 and the quadratic response function (Eqn. 9.1)

were implemented as an undocumented feature in NWChem 5.1.1 [20]. Implemen-

tation details of the NWChem coupled-cluster response codes were first described in
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Ref. [18], while computational issues are discussed in Ref. [8]. One important detail

to note with regard to the quadratic response equations (Eq. 9.8) is that the b-vector

in the linear equations to be solved contains the two-electron integrals, and is thus

expensive to evaluate on the fly, unlike the b-vector corresponding to Eq. 9.7. Thus,

the constant terms which comprise the b-vector,

〈Φ|(1 + Λ)[H, T
(1)
γ ]|Φ

a1...an

i1...in
〉 + 〈Φ|(1 + Λ)µγ|Φ

a1...an

i1...in
〉 (9.11)

are formed only once and stored. In solving Eqn, 9.8 we adopted the DIIS solver

used in the standard CC calculations with initial guess defined as yT
0 = D−1b, where

D is a diagonal matrix with matrix elements defined as Da
i = (ǫi − ǫa) and Dab

ij =

(ǫi + ǫj − ǫa − ǫb). For PNA, 18 iterations were required to converge the first-order

Λ-equations (Eqn. 9.8) for the z-axis to 10−7, which is slightly fewer iterations than

the 23 required for the first-order T -equations (Eqn. 9.7). For comparison, 26 and 13

iterations were required to converge the zeroth-order T - and Λ-equations.

Merging all three terms represented in Eqn. 9.8 into a single procedure in the

code would eliminate the need for additional storage of the b-vector and minimize the

wall time (at the expense of code reuse), but the motivation for this optimization is

limited as long as the storage bottleneck remains the fully-transformed two-electron

integrals. A code which used AO integrals on-the-fly in the computation of interme-

diates containing 3- and 4-virtual two-electron integrals would benefit significantly

from such an optimization.

The results in this paper were obtained with a modified version of NWChem

5.1.1 [20] which has improved four-index transformation algorithms, allowing the

properties of large systems to be calculated quickly and efficiently on parallel com-
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puters. The largest coupled-cluster calculations were run on the Chinook supercom-

puter at PNNL. Each node has 16 GB of memory and two quad-core AMD Barcelona

processors. For the CCSD/d-aug-cc-pVTZ calculation of PNA on 256 nodes, the T ,

Λ, T (1) and Λ(1) iterative procedures took approximately 140 s, 290 s, 180 s, and

290 s per iteration, respectively. The four-index transformation, done fully in-core

using a spin-free N5 algorithm, took approximately 7 h, employing four passes on the

atomic integral generation to reduce memory usage of the half-transformed interme-

diate stored in global memory.

Dalton 2.0 [21], supplemented with the CAMB3LYP patch, was used to perform

all non-CCSD calculations reported in this paper. The DFT calculations were run in

serial workstations, or in the case of PNA, on 512 or ∼ 1000 [22] nodes of BlueGene/P,

except for CAMB3LYP, which produces erroneous results for the hyperpolarizability

when run in parallel.

9.3 Results

In this paper, four common functions — B3LYP [23], PBE [24], PBE0 [25] and

CAMB3LYP [26] — are evaluated using CCSD response theory. We limit ourselves

to these four functionals due to their ubiquitous use and because they collectively

represent three types of functionals: GGA, GGA-hybrid and asymptotically-corrected

(AC) GGA-hybrid.

Due to the importance of basis sets in electric property calculations, the basis

sets developed by Dunning and coworkers [27], Pople and coworkers [30], Sadlej and

coworkers [28, 29] and Roos and coworkers [31] were all considered. The Sadlej basis

sets were designed explicitly for electric properties, while the Roos ANO basis sets
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have a more general design principle which make them sufficiently flexible to handle

such properties. The Dunning series is the most flexible as it contains a systematic

way to increase both the ζ-level and the number of diffuse functions. The economical

Pople basis sets are evaluated despite their known limitations for correlation energies

as well as electric properties. Basis sets were obtained from the NWChem basis set

library [20] or the Basis Set Exchange [32].

9.3.1 Water

The hyperpolarizability of water has been the subject of previous studies [33, 34, 4,

35, 36, 37, 39, 40, 38, 41, 42]. Christiansen, et al. [40] considered correlation effects

beyond the CCSD level using response theory and compared to density-functional

theory while Maroulis [41] used custom basis sets in conjunction with the CCSD(T)

method and the finite-field technique (FF). Spelsberg and Meyer [38] performed multi-

reference configuration-interaction (MRCI) calculations, which are in excellent agree-

ment with our CCSD results for the static hyperpolarizability. In Table 9.1, we

recount the results of Ref. [42] to demonstrate the relevance of our CCSD-LR re-

sults. The parallel hyperpolarizability changes dramatically from CCS to CC2 and

again from CC2 to CCSD, but the difference between CCSD and CC3 is small. The

large basis CCSD(T) result of Maroulis [41] is between CCSD and CC3, although

the difference in basis set means the comparison is only semi-quantitative. All these

results suggest that the effect of triples reduces the hyperpolarizability. Previous

studies affirm the utility of CCSD as a reasonable approximation and an excellent

compromise since one cannot approach the complete basis set limit for coupled-cluster

methods including triples without significant computational resources, and then only

for very small molecules. In addition, the importance of triples suggested by some
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Table 9.1: Hyperpolarizabilities of H2O within the hierarchy of coupled-cluster meth-
ods. See the references given for geometry information and other calculation details.
All quantities are given in atomic units.

Method Basis β‖ Reference

CCS d-aug-cc-pVTZ -14.03 [40]
CC2 d-aug-cc-pVTZ -25.21 [40]

CCSD d-aug-cc-pVTZ -17.73 [40]
CC3 d-aug-cc-pVTZ -17.05 [40]

CCSD(T) Q1 -17.51 [41]

studies [17, 10] seems exaggerated by the use of small basis sets, as it has been found

that the difference between CCSD and CCSDT — at least for polarizabilities —

decreases as the basis set is saturated [11].

In Figure 9.1, the convergence in the zeta level of the three unique components of

the hyperpolarizability tensor is demonstrated for the Dunning basis sets. The only

results which deviate significantly from monotonicity are the triply- and quadruply-

augmented cc-pVTZ points for βY Y Z . This is most likely due to the destabilization

of the valence region by the inclusion of many diffuse functions, which leads to ex-

aggerated polarization. With the exception of the singly augmented series, excellent

results are achieved at the triple-zeta level, and owing to its monotonic convergence,

the doubly augmented series is most reliable. Thus, we consider the d-aug-cc-pV5Z

data to be the reference values for the remainder of this section.

Electric properties of water using based sets in the Pople, Sadlej and Roos families

are compared to those of Dunning in Table 9.2. It is immediately clear that the

results from the Pople basis sets are highly erroneous, in error for the dipole moment

and dipole polarizability by at least 20% in every case, overestimating the former

and underestimating the latter. The Pople sets do not accurately reproduce any of
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Figure 9.1: Basis set convergence of the three unique tensor components composite
and parallel static hyperpolarizability of H2O.
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the components of the hyperpolarizability tensor except by coincidence (βxxz with

6-31+G*) or by cancellation of error (β‖ with 6-311++G**).

The Sadlej basis sets, which are specifically designed to do well for electric prop-

erties, are more accurate than the Pople sets, but do not reproduce the asymptotic

limit of the Dunning series for any of the components. Of the Sadlej bases, POL

is best for the dipole moment and polarizability, but is bettered by HYPOL for the

hyperpolarizability. The POL set is most comparable to the d-aug-cc-pVDZ set in

the Dunning series, despite being approximately two-thirds of the size. The much

larger HYPOL set is somewhat comparible to q-aug-cc-pVTZ but with half as many

functions, but it underestimates the polarizability anisotropy and overshoots the hy-

perpolarizability. The very efficient Z2POL and Z3POL basis sets are much preferred

to their size-comparible Pople counterparts by virtue of the formers’ accuracy for

polarizabilities, but their accuracy for the hyperpolarizability is not as impressive.

Finally, we consider the highly-contracted Roos ANO basis sets. If compare the

accurate of the Roos DZ and TZ bases to their singly augmented Dunning counter-

parts of the same size, we see that they are superior for all aspects of the polarizability,

but less accurate for the hyperpolarizability. This is natural given their construction

and it is likely that if the Roos basis sets were equipped with augmented functions

specifically for electric properties through the Dunning augmentation recipe or by

using construction employed by Sadlej, that they would produce accurate hyperpo-

larizabilities as well. It is important to recognize that the high degree of contraction

used in the Roos basis sets makes them unappealing for mean-field or MP2 calcula-

tions, where the cost of computing the integrals dominates the wall time, whereas for

coupled-cluster calculations, they are quite suitable, provided a fully integral-direct

approach is avoided.
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Table 9.2: Electric properties of H2O at the CCSD level using various basis sets (spherical, frozen core). All quantities
are given in atomic units.

Basis Rank µz αxx αyy αzz αiso αani βxxz βyyz βzzz β‖
6-31+G* 23 0.907 7.311 6.273 6.117 6.567 1.124 11.569 3.238 5.821 12.377

6-31++G** 31 0.870 7.790 6.423 6.455 6.889 1.351 16.205 2.750 8.524 16.488
6-311+G* 29 0.949 7.686 6.074 6.026 6.595 1.636 17.092 1.645 9.364 16.861

6-311++G** 37 0.843 8.067 6.691 6.621 7.126 1.413 16.608 2.689 10.421 17.831
POL 42 0.724 10.157 9.559 9.773 9.830 0.525 11.680 3.420 9.934 15.020

HYPOL 87 0.720 10.164 9.727 9.865 9.919 0.387 10.236 6.803 15.782 19.693
Z2POL 30 0.751 10.132 9.769 9.650 9.851 0.435 9.943 7.237 10.318 16.499
Z3POL 30 0.705 10.000 9.959 9.502 9.820 0.478 10.735 9.723 12.713 19.903

Roos ANO DZ 41 0.724 9.979 9.354 9.606 9.646 0.545 15.007 3.433 9.653 16.856
Roos ANO TZ 92 0.725 9.971 9.195 9.484 9.550 0.680 12.222 4.102 10.199 15.914
aug-cc-pVDZ 41 0.729 9.899 8.708 9.066 9.224 1.058 14.514 3.727 8.924 16.299
aug-cc-pVTZ 92 0.727 9.963 9.071 9.416 9.483 0.779 12.314 5.629 12.763 18.424
aug-cc-pVQZ 172 0.731 9.929 9.167 9.495 9.530 0.662 10.989 5.717 13.371 18.046
aug-cc-pV5Z 287 0.733 9.909 9.191 9.514 9.538 0.623 10.525 5.784 14.137 18.268

d-aug-cc-pVDZ 58 0.725 10.079 9.584 9.702 9.788 0.448 10.964 4.279 9.622 14.919
d-aug-cc-pVTZ 126 0.728 9.998 9.374 9.632 9.668 0.544 9.982 5.690 14.049 17.833
d-aug-cc-pVQZ 229 0.732 9.937 9.271 9.570 9.593 0.578 9.922 5.844 14.588 18.212
d-aug-cc-pV5Z 373 0.733 9.915 9.235 9.544 9.565 0.589 9.910 5.794 14.524 18.136
t-aug-cc-pVDZ 75 0.726 10.070 9.592 9.692 9.785 0.437 11.141 4.903 10.686 16.038
t-aug-cc-pVTZ 160 0.728 9.998 9.375 9.641 9.671 0.542 10.016 6.241 14.567 18.494
t-aug-cc-pVQZ 286 0.732 9.937 9.271 9.571 9.593 0.578 9.951 5.886 14.672 18.305
q-aug-cc-pVDZ 92 0.726 10.068 9.597 9.693 9.786 0.432 11.108 4.893 10.585 15.952
q-aug-cc-pVTZ 194 0.728 9.998 9.375 9.641 9.671 0.542 10.029 6.279 14.550 18.514
q-aug-cc-pVQZ 343 0.732 9.938 9.272 9.571 9.594 0.577 9.949 5.877 14.665 18.295

ROH = 0.9575Å and θHOH = 104.48◦
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9.3.2 Acetonitrile

The nonlinear optical properties of acetonitrile (CH3CN) has been the subject of many

studies [43, 44, 45, 46, 47, 48, 49]. Reis and coworkers [46] revealed the importance of

vibrational and solvation effects as well as the effect of triples at the CCSD(T) level.

Comparison with experiment found that CCSD/d-aug-cc-pVDZ overestimated the

hyperpolarizability with respect to CCSD(T)/d-aug-cc-pVDZ and experiment. Our

results demonstrate that larger basis sets move the CCSD results in the direction

of experiment (Figure 9.2). Vibrational and solvents effects make up approximately

one-third of the parallel hyperpolarizability, thus previous studies of these effects with

modest basis sets are quite justified.

In Table 9.3 we report electric properties at the CCSD level for a number of

different basis sets, including those in the Pople and Dunning families, as well as

the Roos and Sadlej basis sets. The basis set dependence of the dipole moment is

small, and the only value which lies outside of 1.54 ± 0.02 a.u. is for the Z3POL

basis. Dipole polarizabilities with the Dunning’s correlation consistent basis sets are

all in the range 38.7 ± 0.2 a.u. and 23.9 ± 0.2, as is the Sadlej pVTZ basis, while

the Z3POL and Pople basis sets deviate from this range. Only the αxx component

of the Z3POL basis is an outlier, while the Pople basis sets are different by no small

amount in both components, which is consistent with previous studies [8]. For the

hyperpolarizability components, the Pople basis sets are completely inadequate, if

it can be taken for granted that the Dunning series saturates to the proper limit.

The βxxx component is off by approximately a factor of two for all four Pople basis

sets, while both the Sadlej bases err by at least 25% with respect to the apparent

asymptotic value of the Dunning series, ∼ −34. The good agreement between the

apparent limit of the Dunning series and the Roos ANO TZ basis for the significant
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Figure 9.2: Basis set convergence of the three unique tensor components composite
and parallel static hyperpolarizability of CH3CN.
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tensor components suggests this limit is correct and a useful standard for evaluating

other basis sets. In contrast, the limit value of the Pople basis sets is clearly incorrect;

although these basis sets were not designed to be extrapolated, the incorrect limit

suggests that there are fundamental shortcomings of these basis sets for correlated

calculations of hyperpolarizabilities. While the serious shortcomings of the Pople

basis sets for third-order electric properties is not surprising, it is puzzling why the

Sadlej pVTZ and Z3POL basis sets are significantly in error for the βxxx, despite

their design being specifically for electric properties. It is possible that inclusion of

nonlinear response into the construction of these basis sets is necessary. Although not

frequently used for nonlinear optical studies, the Roos ANO TZ basis set performs

quite well in comparison to Dunning basis sets which contain many more functions.

However, the general contraction scheme employed by the Roos basis sets can add

significantly to the computational cost of the integral calculation, discouraging the use

of such basis sets for integral-direct procedures, either during the SCF step, or in some

implementations of CCSD. However, when a fast integral code is used and aggregate

memory is sufficient to cache all the integrals, as is the case with NWChem for the

present calculations, the additional cost of using such basis sets is not a concern.

The performance of common density-functionals and Hartree-Fock (HF) was eval-

uated for a variety of basis sets, although we report only the data for d-aug-cc-pVTZ

(see Table 9.4). This basis was sufficient to sufficiently converge the electric properties

for mean-field calculations. It was critical to use doubly-augmented basis sets but the

results were less sensitive to cardinality, as d-aug-cc-pVDZ and d-aug-cc-pVTZ pro-

duced similar results in most cases. Of the four functionals considered, CAMB3LYP

clearly performed the best (by comparison with CCSD) for the polarizability and

hyperpolarizability, although the dipole moment was the worst of the four. The αxx
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Table 9.3: Comparison of basis sets for electric properties of CH3CN at the CCSD
level. Pure angular functions were used, as was the frozen core approximation. All
quantities are given in atomic units. The x-axis is unique while the y- and z-axes are
degenerate. The CCSD iterations did not converge with the t-aug-cc-pVQZ basis set.

Basis Rank µx αxx αyy βxxx βxyy βyyy β‖
6-31+G* 60 1.558 35.932 19.536 -74.027 6.909 8.776 -36.125

6-31++G** 72 1.534 36.206 20.060 -69.492 8.419 8.974 -31.592
6-311+G* 75 1.545 36.321 20.001 -70.766 8.854 8.875 -31.835

6-311++G** 87 1.518 36.719 20.447 -66.032 10.148 9.125 -27.441
Z3POL 72 1.613 36.347 23.486 -47.580 -1.911 4.152 -30.841

Sadlej pVTZ 99 1.531 38.885 23.993 -43.195 -4.697 5.266 -31.554
Roos ANO DZ 102 1.531 38.905 24.130 -38.369 0.017 4.278 -23.001
Roos ANO TZ 240 1.549 38.596 23.970 -34.336 -0.016 4.774 -20.621
aug-cc-pVDZ 96 1.534 38.772 23.728 -34.504 3.998 4.545 -15.905
aug-cc-pVTZ 207 1.550 38.674 23.955 -34.193 1.043 4.774 -19.264
aug-cc-pVQZ 378 1.556 38.590 23.939 -34.129 -0.080 4.727 -20.574

d-aug-cc-pVDZ 135 1.531 38.805 24.149 -36.323 -2.100 4.318 -24.315
d-aug-cc-pVTZ 282 1.549 38.673 24.032 -34.592 -0.700 4.589 -21.595
d-aug-cc-pVQZ 501 1.556 38.593 23.954 -34.054 -0.455 4.681 -20.978
t-aug-cc-pVDZ 174 1.532 38.810 24.158 -36.048 -1.780 4.505 -23.765
t-aug-cc-pVTZ 357 1.549 38.676 24.034 -34.418 -0.708 4.669 -21.500
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component of the polarizability demonstrated a similar trend as for benzene [8], where

the PBE functional, which does not include any exact exchange (EE), was the worst

of the four, while B3LYP and PBE0, which contain 20% and 25% EE, respectively,

performed similarly. The asymptotically corrected CAMB3LYP functional outper-

formed both of these, although the value of αxx was ∼ 1.3 a.u. above the CCSD

results with the same basis set. For the largest component of the hyperpolarizability,

βxxx, CAMB3LYP was quite close to CCSD, differing by ∼ 1.0 au, while the other

DFT methods were in error by 17-24%. All four of the functionals were reasonable

close for the two smaller components of the hyperpolarizability, βxyy and βyyy, partic-

ularly in comparison to the large variance in these components with respect to basis

set. As β‖ is dominated by βxxx, CAMB3LYP is the most accurate for this quantity,

and quite close to the CCSD result. The close agreement of PBE is spurious, caused

by the large value of βxyy and the small magnitude of the dipole moment relative to

the other functionals.

Finally, considering the other wavefunction methods, one sees clearly that the

hyperpolarizability component aligned along the molecular axis, βxxx is extremely

sensitive to the correlation treatment. The uncorrelated HF and CCS models recover

∼ 40% and ∼ 20% of the CCSD value, respectively, while the inclusion of doubles

at second-order with the CC2 method reduces the difference with CCSD to ∼ 5%.

These facts makes it even more impressive that CAMB3LYP delivers such excellent

results, since KS-DFT is a mean-field treatment whose ability to capture two-body

correlation should not be taken for granted.
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Table 9.4: Comparison of CCSD and DFT electric properties of CH3CN with the
d-aug-cc-pVTZ basis set. The CCSD results are reported for a variety of basis sets
(spherical, frozen core); DFT results are exclusively for the d-aug-cc-pVTZ basis set.
All quantities are given in atomic units. The x-axis is unique while the y- and z-axes
are degenerate. Due to the different orientations used in NWChem and Dalton, the
sign of the dipole moment (µx) and one component of the hyperpolarizability tensor
(βyyy) for CCSD and the other methods have opposite sign, but this has no effect on
β‖.

Method µx αxx αyy βxxx βxyy βyyy β‖
PBE -1.572 41.848 25.089 -28.778 -2.319 -4.047 -20.051
PBE0 -1.600 40.260 24.349 -25.817 -0.365 -4.132 -15.927

B3LYP -1.595 40.655 24.676 -28.748 -0.722 -5.348 -18.115
CAMB3LYP -1.614 39.976 24.471 -33.612 -0.700 -5.197 -21.006

HF -1.679 38.127 23.587 -14.151 2.580 -5.751 -5.395
CCS -1.679 40.238 25.252 -7.033 3.994 -5.274 0.572
CC2 -1.522 39.529 24.503 -36.491 -1.234 -4.966 -23.376

CCSD 1.549 38.673 24.032 -34.592 -0.700 4.589 -21.595

9.3.3 Chloroform

Two previous studies of chloroform’s electric properties include that of Dupuis and

coworkers [50], who uses the TDHF method to study the dynamic hyperpolarizabil-

ity, and that of Eichinger, et al. [48], who compared various DFT methods for the

static hyperpolarizability. A related study by Sekino and Bartlett considered the

hyperpolarizability of fluoromethane [3].

In Figure 9.3, the convergence of the hyperpolarizability components in the Dun-

ning series is demonstrated. Table 9.5 report data for a larger number of basis sets.

The convergence in the zeta and augmentation levels is similar in trend to acetoni-

trile, showing a significant change as the second set of augmented functions is added,

although the changes are on a much larger scale. Convergence in the zeta-level is good

for the doubly-augmented series, and there is good agreement between this limit and
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the apparent limits of the singly- and triply-augmented series as well as the Roos

TZ basis. As for acetonitrile, there are catastrophic errors in the hyperpolarizability

obtained with any of the Pople basis sets; the sign of βxxx is similar in magnitude

but the opposite sign and the error in β‖ is over an order of magnitude with respect

to d-aug-cc-pVQZ. The Roos DZ and aug-cc-pVDZ bases are an order of magnitude

too small for βxxx and quite wrong for β‖, which is a stark contrast to CH3CN, where

both of these basis sets do reasonably well. Conversely, the Sadlej basis sets POL

(Sadlej pVTZ) and Z3POL are much better for CHCl3 than they are for CH3CN.

These trends indicate that molecules which are of similar size but different chemical

composition may have very different characters with respect to basis set convergence.

In this case, the obvious difference is that chloroform is electron-rich and contains the

third-row element chlorine, where as acetonitrile is relatively electron-deficient.

Table 9.6 reports electric properties for four common density functionals and

CCSD with d-aug-cc-pVTZ. As for acetonitrile, the CAMB3LYP functional does the

best of the four by comparison to CCSD, although the PBE0 and B3LYP functionals

produce reasonably accurate results. While CAMB3LYP is worst at reproducing the

dipole moment, dipole polarizabilities are nearly identical to CCSD. All the hyperpo-

larizability components are within ∼ 10% of the CCSD results. As is seen in many

molecules, the absence of Hartree-Fock exchange from a density functional results in

the overestimation of hyperpolarizabilities by a significant amount, in this case ∼ 20%

for PBE.
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Figure 9.3: Basis set convergence of the three unique tensor components composite
and parallel static hyperpolarizability of CHCl3.
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Table 9.5: Comparison basis sets for electric properties of CHCl3 at the CCSD level. Pure angular functions were
used, as was the frozen core approximation. All quantities are given in atomic units. The x-axis is unique while the
y- and z-axes are degenerate. The CCSD iterations did not converge with the t-aug-cc-pVQZ basis set.

Basis Rank µx αxx αyy βxxx βxyy βyyy β‖
6-31+G* 86 -0.485 34.448 51.576 -11.568 -14.572 -24.595 -24.427

6-31++G** 90 -0.469 34.632 51.799 -10.351 -16.124 -25.323 -25.559
6-311++G** 123 -0.446 34.849 52.389 -7.596 -15.104 -22.957 -22.682

Z3POL 90 -0.586 39.848 54.435 16.057 -9.999 -19.201 -2.365
Sadlej pVTZ 129 -0.418 45.310 62.681 14.430 -9.936 -19.357 -3.266

Roos ANO DZ 121 -0.410 43.525 61.171 1.722 -12.159 -12.357 -13.557
Roos ANO TZ 257 -0.414 44.902 62.576 14.558 -8.144 -12.284 -1.038
aug-cc-pVDZ 113 -0.417 43.178 60.906 0.978 -8.398 -6.159 -9.491
aug-cc-pVTZ 219 -0.417 44.677 62.263 9.655 -7.444 -9.046 -3.139
aug-cc-pVQZ 378 -0.422 44.840 62.412 14.426 -8.396 -14.631 -1.420

d-aug-cc-pVDZ 153 -0.416 45.153 62.631 15.694 -11.351 -20.326 -4.205
d-aug-cc-pVTZ 292 -0.417 45.125 62.687 16.440 -9.749 -17.763 -1.835
d-aug-cc-pVQZ 494 -0.423 44.899 62.481 15.391 -9.113 -17.007 -1.701
t-aug-cc-pVDZ 193 -0.416 45.193 62.686 16.103 -11.237 -20.467 -3.823
t-aug-cc-pVTZ 365 -0.417 45.127 62.691 16.389 -9.510 -17.477 -1.578
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Table 9.6: Comparison of CCSD and DFT electric properties of CHCl3 with the d-
aug-cc-pVTZ basis set. All quantities are given in atomic units. The x-axis is unique
while the y- and z-axes are degenerate. Due to the different orientations used in
NWChem and Dalton, the sign of the dipole moment (µx) and one component of
the hyperpolarizability tensor (βyyy) for CCSD and the other methods have opposite
sign, but this has no effect on β‖.

Method µx αxx αyy βxxx βxyy βyyy β‖
B3LYP 0.423 45.710 64.140 20.406 -12.646 21.924 -2.940

CAMB3LYP 0.435 45.057 62.657 18.699 -10.788 19.530 -1.729
PBE0 0.427 44.896 63.028 17.023 -11.210 21.096 -3.233
PBE 0.407 46.629 65.972 22.137 -14.611 27.392 -4.246
HF 0.474 42.837 59.451 13.934 -7.201 13.336 -0.281

CCS 0.474 46.346 63.550 13.373 -8.787 21.061 -2.521
CC2 0.400 46.235 65.441 16.145 -11.473 23.913 -4.081

CCSD -0.417 45.125 62.687 16.440 -9.749 -17.763 -1.835

9.3.4 para-Nitroaniline

Para-nitroaniline (PNA) is the simplest prototype push-pull chromophore with an

aromatic bridge. Previous studies include Refs. [51, 52, 53, 54, 55, 56, 57, 59, 58, 60,

61, 62, 63, 64, 65, 66, 67], which cover a diverse range of topics, including vibrational

hyperpolarizabilities, solvent effects, and correlation at lower levels of theory. The

only previous study of PNA with CCSD used fairly limited basis sets [42]. In this

paper, the hyperpolarizability of PNA has been computed using a variety of large

basis sets, including as many as 812 functions; in addition, we compare results for

C2v and Cs structures optimized at the B3LYP/cc-pVTZ level. Finally, the utility of

four DFT functionals is evaluated using both DZ and TZ basis sets.
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Table 9.7: Electric properties of para-nitroaniline at the CCSD level using various basis sets (spherical, frozen core).
All quantities are given in atomic units.

Basis Rank µz αxx αyy αzz βxxz βyyz βzzz β‖
3-21G* 102 -2.600 18.887 83.660 116.216 -1.593 -71.573 1403.802 798.382

6-31+G* 192 -2.829 50.104 99.215 143.060 -59.613 -114.407 2019.046 1107.016
6-31++G** 216 -2.781 50.429 99.826 143.026 -59.491 -114.041 1974.437 1080.543
6-311+G* 238 -2.840 50.123 99.752 143.452 -63.887 -113.421 1954.214 1066.144

6-311++G** 262 -2.765 50.640 100.515 143.256 -61.702 -112.574 1891.733 1030.474
Z3POL 216 -2.808 54.493 101.656 148.228 -45.327 -94.947 2096.000 1173.435

Sadlej pVTZ 294 -2.711 56.811 105.130 153.008 -58.860 -113.099 1789.563 970.563
Roos ANO DZ 304 -2.725 55.915 104.576 152.121 -57.855 -115.510 1800.087 976.033
aug-cc-pVDZ 284 -2.722 56.303 104.526 152.291 -62.331 -113.264 1822.869 988.364
aug-cc-pVTZ 598 -2.735 55.960 104.519 152.271 -54.466 -117.686 1759.313 952.297

d-aug-cc-pVDZ 398 -2.717 56.907 105.109 153.209 -58.935 -113.991 1782.792 965.920
d-aug-cc-pVTZ 812 -2.734 56.088 104.642 152.424 -52.374 -116.870 1745.828 945.950
t-aug-cc-pVDZ 512 -2.717 56.930 105.138 153.215 -57.946 -114.419 1782.760 966.237
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The electric properties of PNA are far less demanding with respect to basis set

than smaller molecules, which is consistent with investigations of other large molecular

systems, such as aromatic hydrocarbons [8] and water clusters [68]. One can see in

Table 9.7 that dipole moment, polarizability and parallel hyperpolarizability are quite

similar for all the Dunning basis sets, the Roos ANO DZ basis, and the Sadlej pVTZ

(POL) basis set. Data from the Pople sets and Z3POL deviate more so from the

d-aug-cc-pVTZ basis, the best quality basis considered. The addition of the second

set of diffuse functions makes a small difference for both the DZ and TZ cases and

the increase from DZ to TZ at the same augmentation level is larger than either of

these changes. It is tenuous to do a formal extrapolation using the Dunning series

without a QZ result, but given the trends seen, it appears that the d-aug-cc-pVTZ

result provides a reasonably converged β‖, and given the trends, is most likely an

upper bound on the CCSD/CBS result.

The comparison of CCSD to other methods (Table 9.8) is far more interesting.

None of the four functionals considered reproduces the CCSD dipole moment to within

5% with the aug-cc-pVTZ basis. The longitudinal polarizabilities (αzz), previously

found to be challenging in aromatic molecules [8], are grossly in error for PBE, which

contains no HF exchange. The conventional hybrid functionals PBE0 and B3LYP do

somewhat better, while CAMB3LYP overcompensates is actually below the CCSD

result and is the best of the DFT methods considered. The other polarizability com-

ponents are less demanding on the functionals and all four are reasonably close to the

CCSD results, with PBE closest of the four. All three unique components of the hy-

perpolarizability tensor appear challenging for DFT, although for practical purposes,

the βzzz is much more significant given its magnitude. B3LYP is remarkably close to

CCSD for β‖, due to a near perfect cancellation of error in the three components; it
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is also the most accurate of the three conventional functions (GGA or GGA-hybrid).

Both PBE and PBE0 are significantly in error for βzzz, but in the opposite direc-

tion, and both overestimate βyyz by 20 au. CAMB3LYP underestimates the βzzz by

over 200 au, which is the reason that its β‖ result is the worst of the four function-

als. However, none of the DFT methods is as erroneous as HF, CCS or CC2, which

err by approximately 300 a.u. for β‖, with HF and CCS underestimating and CC2

overestimating this value.

The poor performance of CAMB3LYP and the more approximate wavefunction

methods (HF, CCS, CC2) is particularly discouraging with respect to modeling larger

compounds. Because of the catastrophic errors in DFT for fourth-order electric prop-

erties (γ), one is tempted to use HF, which is supposedly qualitatively correct. While

HF, CCS and CC2 do not fail for the same reasons that DFT does, errors on the

order of 50% are unacceptable if one is to make any comparison to experiment.

CAMB3LYP, which partially corrects for the long-range errors in DFT, does not

perform as well as the traditional functional upon which it was built (B3LYP), al-

though the former should be more physical with respect to the problems related to

electric-field perturbations. It is possible that reparametrizing the asymptotic cor-

rection of CAMB3LYP is necessary for larger molecules than the original set used to

determine CAMB3LYP’s µ, α and β, although related work on this subject pertaining

to excited states [69, 70] suggests that reparameterization asymptotically-corrected

functionals is not a panacea.
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Table 9.8: Comparison of CCSD to other methods for the electric properties of para-nitroaniline with the aug-cc-
pVTZ basis set. All quantities are given in atomic units. Due to the different orientations used in NWChem and
Dalton, the sign of the dipole moment (µx) for CCSD and the other methods have opposite sign; the other properties
are not affected. The CCS and CC2 methods were computational intractible with the aug-cc-pVTZ basis.

Basis µz αxx αyy αzz βxxz βyyz βzzz β‖
aug-cc-pVDZ

B3LYP 3.098 54.952 102.776 162.876 -64.367 -143.336 1791.496 950.275
CAMB3LYP 2.956 54.476 101.946 154.877 -54.763 -141.278 1606.610 846.341

PBE0 3.085 54.436 101.683 160.051 -54.812 -136.923 1698.357 903.973
PBE 3.025 55.731 104.136 171.203 -67.956 -127.796 1827.082 978.798
HF 3.258 53.726 99.731 141.314 -39.723 -230.316 1206.600 561.936

CCS 3.062 58.052 106.476 146.952 -42.844 -232.313 1233.219 574.838
CC2 2.685 57.384 109.750 168.165 -69.124 -121.020 2324.075 1280.359

CCSD -2.722 56.303 104.526 152.291 -62.331 -113.264 1822.869 988.364
aug-cc-pVTZ

B3LYP 2.943 55.296 102.576 159.322 -63.263 -144.326 1796.667 953.447
CAMB3LYP 2.885 54.833 101.633 150.522 -53.453 -138.388 1535.478 806.182

PBE0 2.913 54.554 101.560 155.742 -51.885 -136.830 1681.322 895.564
PBE 2.938 55.955 104.077 168.621 -65.514 -134.214 1910.501 1026.464
HF 2.993 53.946 99.021 133.699 -35.940 -193.975 937.402 424.492

CCSD -2.735 55.960 104.519 152.271 -54.466 -117.686 1759.313 952.297



204

Table 9.9: Geometry effects on PNA at the CCSD/aug-cc-pVDZ level.

Basis |µ| αiso αani ||β||∞ |β‖|

Cs
a 2.57 103.4 80.7 1659.6 891.7

C2v
a 2.72 104.4 83.1 1822.9 988.4

C2v
b (Ref. [42]) - - - 1919.1 1041.7

a B3LYP/cc-pVTZ optimized geometry.
b Based upon crystallographic data; see Ref. [42] for details.

It is worth noting the importance of geometry for computed electronic hyper-

polarizabilities. The variation in CCSD/aug-cc-pVDZ results with the Cs and C2v

optimized geometries is of similar magnitude to the differences between CCSD and the

DFT methods. The parallel hyperpolarizability using from Ref [42] using a different

C2v geometry also differs from our result by approximately 50 au.

9.4 Conclusions

In this paper, the role of basis set and correlation treatment in computing the electric

properties has been explored using a variety of molecules. The wide variety of basis

sets considered provides new insight into how best to compromise between compu-

tational efficiency and accuracy. For small molecules, the important of very large

basis sets is reaffirmed using H2O. Fortunately, for large molecules, such huge basis

sets are not required, provided the one used is properly designed. For medium-sized

molecules such as CH3CN and CHCl3, the d-aug-cc-pVTZ provides very accurate

results and is small enough to work with correlated methods as complete as CC3. For

the prototypical push-pull chromophore, PNA, the modest Sadlej pVTZ (POL) basis

set delivers results close to much larger Dunning basis sets which are computationally

intractable at the CCSD level except when using very large computational resources.
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As PNA most closely resembles the larger extended systems which are obvious targets

for nonlinear optical studies, it is encouraging that a modest basis set is capable of

deliver excellent results.

The results also clearly show that basis sets from the Pople family, used ubiqui-

tously by quantum chemists for all kinds of simulation, are incapable of delivering

accurate results for optical properties, especially the hyperpolarizability, as clearly

demonstrated for CH3CN and CHCl3. Except for water, the similarly-sized Z3POL

basis set is not satisfactory, and is the least accurate of all for PNA. As no basis set

smaller than d-aug-cc-pVTZ delivers reliable results for all four cases, it is clear that

any quantitative study of nonlinear optical properties must begin with a basis set

calibration focusing on the Dunning series, but potentially also including Sadlej and

Roos basis sets since their slightly different designs may reveal artifacts in the small

Dunning basis sets.

With respect to the treatment of electron correlation, CAMB3LYP is generally

superior to conventional GGA and GGA-hybrid functionals and inclusion of HF ex-

change is important to compute accurate polarizability with DFT. Both of these

conclusions are consistent with previous studies. However, as was noted for PNA,

CAMB3LYP is not universally more accurate than other DFT methods. Thus, on

the basis of the results presented here, the prospect for predictive quantum chemical

studies of nonlinear optical materials is rather bleak, as the highly-reliable CCSD

method is too expensive for common use and DFT does not appear capable of de-

livering quantative accuracy even with respect to the loose tolerances of nonlinear

optical experimental data. Finally, the contribution of solvent, geometry and vibra-

tion which were, for the most part, not considered in this study, are on the order of,

or significantly greater than the variations due to basis set and correlation treatment.



206

Hence, a holistic treatment of nonlinear optical properties of molecules is far from

realizable.
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CHAPTER 10

CALCULATIONS OF MOLECULAR PROPERTIES IN

HYBRID COUPLED-CLUSTER AND MOLECULAR

MECHANICS APPROACH

This chapter has been previously published in the following article: J. R. Hammond,

M. Valiev, W. A. de Jong and K. Kowalski, “Calculations of properties using a hybrid

coupled-cluster and molecular mechanics approach,” J. Phys. Chem. A 111, 5492

(2007). Copyright 2007 by the American Chemical Society.

10.1 Introduction

The coupled-cluster (CC) methodology [1, 2, 3, 4, 5, 6, 7, 8, 9] has become one of the

most widely used tools in quantum chemistry. Over the last two decades numerous

variants and extensions were designed to treat not only the energetics of ground and

excited states but also to calculate the molecular properties. In contrast to the finite

field approaches based on the numerical differentiation of the electronic energy over

external field strength, the CC linear response theory (CC-LR)[10, 11] enables us

to obtain expressions for static and/or frequency-dependent properties in a compact

analytical manner. Different levels of CC theory corresponding to increasing excita-

tion ranks of cluster operators were tested for first-, second-, third- and higher-order

properties. Among them, the linear response CC with singles and doubles (CCSD-

LR)[12] and with singles, doubles, and triples (CCSDT-LR)[13] approaches providing
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different levels of description of correlation effects now have a chance to be used in

realistic calculations. In order to save the big numerical overhead associated with

full inclusion of triply excited clusters several iterative methods such as CCSDT-n

(n = 1 − 3) [14, 15] and CC3 [16] have been tested leading to consistent improve-

ments with respect to the CCSD-LR results. Recently, Kállay and coworkers have

implemented general order CC [17] including energy derivatives [18] and response

functions [19].

In realistic simulations of molecules in solution, electron correlation effects and

the effect of the surrounding environment are equally important. For this purpose,

one frequently combines the ab initio methodology (QM) with classical molecular

mechanics (MM). The QM/MM approach [20] was recently extended by Christiansen

and coworkers to include linear response functions for CC wavefunctions, [22] and

applied to electric moments [21] and to excited states and polarizabilities [23] of

liquid water.

Recently, two of the authors developed an efficient multiscale dynamical frame-

work for high-level calculations of finite temperature ground and excited state prop-

erties. [24] We illustrated the performance of this approach on the excited states of

cytosine base in the native DNA environment using a variant of completely renor-

malized equation of motion coupled-cluster formalism with singles, doubles and non-

iterative triples (CR-EOM-CCSD(T)) [42] method to describe quantum region. For

obvious reason the integration of the CCSD property codes with the QM/MM mod-

ule is also important. Therefore, in this paper, we discuss preliminary results for

the dipole moments and static polarizabilties obtained with combined linear response

CCSD and MM approches. As a benchmark system for the CCSD/MM simulation

we use the Cl2O molecule in the CCl4 solution.
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Another problem that may heavily impact future QM/MM simulations of molec-

ular properties is the ability of reducing the overall time required by multiple calls

to rather expensive ab initio procedures for quantum region. In a long-term perspec-

tive, the numerical demands of the CC-like approaches can hamper the widespread

use of the CC techniques in the context of QM/MM simulations. Several techniques

based on the Laplace or Cholesky decomposition [25, 26, 27, 28] of perturbative de-

nominators, methods striving at the reduction of the virtual orbital space [29, 30],

or localized approaches [31, 32, 33, 34] are very promising in this matter. Also other

class of approaches based on the extrapolation schemes such as correlation energy ex-

trapolation by intrinsic scaling (CEEIS), [35, 36, 37, 38] or extrapolation approaches

for second order energies developed by Ayala, Scuseria, and Savin [39] (for rigorous

bounds for extrapolated correlation energies see Ref. [40]) seem to be very effective in

attaining good estimates of correlation energies. We have recently proposed an ap-

proximate scheme based on the asymptotic extrapolation scheme,[41] which allowed

us to extrapolate the excitation energies as a function of simple cut-off factor for

orbitals energies of correlated unoccupied orbitals for fraction of time required by full

calculations. We clearly demonstrated that for the valence excited states the loss of

accuracy was on the order of few hundreds of electron volts. We believe that similar

arguments can be used in the CC property calculations. However, before going to

large scale QM/MM simulations we want to estimate the effectiveness of the AES

using simple gas-phase systems.

The organization of this papers is as follows: in Section 2 we give a brief description

of the most basic features of linear response theory and asymptotic extrapolation

scheme. In Section 3 we discuss the results of our simulations for Cl2O molecule in

the gas-phase and CCl4 solution.
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10.2 Theory

Coupled-cluster response theory [10, 11, 19] was previously described in Chapter 2

(which is based upon the presentation in the journal article associated with this

chapter). Here we describe the asymptotic extrapolation scheme in the calculations

of molecular properties. We also give a short description of the QM/MM interface

we used in our calculations and AES-related issues.

The symmetric formulation of coupled-cluster linear response (see Chapter 2)

was implemented for CCSD in the NWChem [46] software suite using the Tensor

Contraction Engine.[49, 50, 51]

10.2.1 Asymptotic extrapolation scheme

The time requirements of CC calculations can be significantly reduced by using

asymptotic extrapolation schemes introduced in the context of excited state calcu-

lations and described in Ref. [41]. We start from noticing that the whole set of

correlated spinorbitals (Ω) can be decomposed into two subsets

Ω = Ωτ + Ω̄τ , (10.1)

where the Ωτ and Ω̄τ sets are composed of all correlated occupied spinorbitals and

correlated virtual orbitals with corresponding orbital energies below the value of τ

factor and all virtual orbitals with orbitals energies being greater than the τ parameter

respectively. This decomposition induces decomposition of the algebra of operators

expressed in the second quantized formalism. Each of these operators X, representing
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for example the Hamiltonian or cluster operators, can be decomposed as follows:

X = Xτ + X̄τ , (10.2)

where Xτ represents part of the X operator expressed in terms of spinorbital indices

from the set Ωτ while each term in X̄τ contain at least one index from Ω̄τ . This leads

to the following form of CC equations:

Qτ [(Hτ eTτ )C + (H̄τeTτ +T̄τ )C ]|Φ = 0 (10.3)

Q̄τ [(Hτ eT̄τ )C + (H̄τ eTτ+T̄τ )C ]|Φ〉 = 0 (10.4)

where, Qτ and Q̄τ are projection operators on the manifold of excited configurations

used to define components Tτ and T̄τ (T = Tτ + T̄τ ) respectively. The H̄τ operator

in Eqs.(10.3,10.4) should not be confused with similarity transformed Hamiltonian.

Using current notation the H̄τ operator refers to the part of second quantized elec-

tronic Hamiltonian that contains at least one spinorbital index from Ω̄τ . Although

both sets of equations labeled by Qτ and Q̄τ projections are coupled with respect

to amplitudes defining the Tτ and T̄τ components, for sufficiently large values of

the τ parameter we can anticipate that the most important correlation effects are

already included in Tτ part. This enables us to approximate the Qτ -equations by

((Hτ + H̄τ )T̄τ )C + (H̄τeTτ )C . For example, the approximate formula for doubly

excited T̄τ amplitudes then becomes

t̄
ij
ab ≃

1

ǫi + ǫj − ǫa − ǫb
〈Φab

ij |(H̄τeTτ )C |Φ〉. (10.5)
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Since the orbital energy differences in Eq.(10.5) are on the order of τ (ǫi+ǫj−ǫa−ǫb =

O(τ)) the T̄τ amplitudes reveal an 1
τ behavior in the asymptotic limit. This simple

observation can be easily generalized to Λ and/or T (1) operators (Λ = Λτ +Λ̄τ , T (1) =

T
(1)
τ +T̄

(1)
τ ), although the T (1) case requires special attention since the operators (such

as the dipole moment), having no obvious interpretation in the language of energy

differences, are involved in the equations for T (1).

In analogy to the asymptotic schemes used to extrapolate the excitation energies,

the same reasoning can be employed in calculating properties. For example, using

the bivariational approach,[47] the expectation value for any one-body operator can

be written as

〈ρ〉 = 〈Φ|(1 + Λτ + Λ̄τ )(e−(Tτ+T̄τ )(ρτ + ρ̄τ )eTτ +T̄τ )|Φ〉 (10.6)

Grouping all terms depending on Ωτ -label creation/annihilation operators (i.e., the

Λτ , ρτ , and Tτ operators) we can rewrite 〈ρ〉 as

〈ρ〉 = 〈ρτ 〉 + ν̄τ , (10.7)

where 〈ρτ 〉 = 〈Φ|(1+Λτ )(e−Tτ ρτ eTτ )|Φ〉 and ν̄τ decays at least as 1
τ in the asymptotic

limit. It is convenient to exploit formula (10.7) in order to extrapolate to the exact

value obtained for a given level of theory using full set of correlated spinorbitals. We

will use simple functions such as f(τ) = a1 +
∑

i=1,n
ai+1
τ i+1 to find the best fit to

several values of 〈ρτ 〉 obtained in calculations for various values of τ .

Another important issue concerns the size-consistency of the AES results. In the

general case, the AES does not have to be rigorously size-consistent, even though

the extrapolation is based on the sample points that correctly dissociate in the non-
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interacting subsystem limit. Another reason for this can be attributed to the τ -

dependence of the basic operators. In calculations for a given τ value the Tτ and T
(1)
τ

operators do not have to lead to size-consistent results even though they are obtained

from explicitly connected equations (the equations for Λτ include some disconnected

but linked terms, which in calculating the properties, when the HF reference is em-

ployed, are fully contracted to connected operators such as e−Tτ ρτ eTτ leading to

connected property-diagrams). In order to arrive at the size-consistency of approxi-

mate CC approaches one has to be able to separately localize the set of occupied and

unoccupied orbitals in the non-interacting subsystems limit (for exhaustive discussion

of related issues see Ref. [48]). Since approaches such as the CCSD, CCSDT, etc. are

invariant under the rotations of occupied and unoccupied orbitals this localization

does not have to be done explicitely. However, by cutting off all virtual orbitals

above some τ threshold we may define virtual Ωτ space, which in non-interacting

subsystems limit cannot be localized. The control of localization properties for all

Ωτ spaces used by AES can be hard to achieve for larger systems. In such cases the

rigorous size-consistency may be only approximately restored in the extrapolation

process.

10.3 Computational details

All linear response codes as well as the second quantized expressions for static po-

larizabilities were automatically generated by TCE [49, 50, 51]. Calculations for

the ΛCCSD operator and the CCSD dipole moments were performed using code im-

plemented by Hirata [49]. In all codes a new and more efficient way of handling

two-electron integrals and related offset-tables was used [52].
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Table 10.1: Optimized ground-state energies and geometries obtained with the B3LYP
and CCSD(T) approaches using the aug-cc-pVTZ basis set (Cartesian representation
of d functions was used in calculations).

Method Total Energy RO−Cl αCl−O−Cl

B3LYP -995.598665 1.71437 112.60327
CCSD(T) -994.486282 1.71399 110.84889

In the gas-phase calculations for the Cl2O molecule we used Sadlej’s (POL1) [54]

and aug-cc-pVXZ (X=D,T,Q) basis sets [55]. In all calculations all core electrons were

kept frozen and Cartesian representation of the angular-momentum functions was

used for the POL1 and aug-cc-pVXZ, (X=D,T,Q) basis sets. We optimized ground-

state geometry with the B3LYP and CCSD(T) approaches using aug-cc-pVTZ basis

set. As seen from Table 10.1, the equilibrium value of RO−Cl is nearly the same

for both approaches discussed in the Table 10.1. The more substantial differences

occur for the Cl-O-Cl angle. While the CCSD(T) method predicts its value to be

110.849 degree, the B3LYP value is significantly different and equals 112.603 degree.

Since the first and second order properties may be sensitive to such geometry changes

we decided to use the CCSD(T) equilibrium geometry in all gas-phase calculations

presented here (see Tables 10.2 and 10.3).
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Table 10.2: Extrapolated values of the CCSD polarizabilities and dipole moment of the Cl2O molecule obtained with
asymptotic extrapolation scheme (AES). Two functions were used in extrapolation f1(τ) = x1 +

x2
τ and f2(τ) =

x1 +
x2
τ +

x3
τ2 . Versions (A) and (B) refer to five {τ2, τ3, τ4, τ5, τ6} and six points {τ1, τ2, τ3, τ4, τ5, τ6} extrapolation

schemes, respectively. The aug-cc-pVQZ basis set was used (Cartesian representation of d functions was employed)
and all core orbitals were kept frozen. The energy of highest molecular orbital is equal to 226.088907 Hartree.

Property τ1 = 1.5 τ2 = 2.0 τ3 = 2.5 τ4 = 3.0 τ5 = 3.5 τ6 = 4.0 f
(A)
1 f

(B)
1 f

(A)
2 f

(B)
2 full CCSD

αXX 53.979 54.046 53.932 54.016 53.977 53.972 53.920 53.970 54.252 53.873 53.457
αY Y 29.675 29.725 29.458 29.361 29.318 29.317 28.856 29.052 29.752 28.603 28.646
αZZ 32.540 32.611 32.472 32.413 32.401 32.383 32.149 32.286 32.573 31.941 31.783
µ -0.174 -0.183 -0.184 -0.207 -0.206 -0.205 -0.236 -0.228 -0.232 -0.251 -0.237
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Table 10.3: The CCSD dipole moments and polarizabilities obtained for the Cl2O
molecule for the LR-CCSD(T),IB equilibrium geometry. All core orbitals were kept
frozen.

Basis set αXX αY Y αZZ ∆α ᾱ µ
POL1 53.711 29.167 32.102 23.216 38.327 -0.228

aug-cc-pVDZ 52.364 27.002 30.233 23.911 36.533 -0.223
aug-cc-pVTZ 53.272 28.300 31.479 23.544 37.962 -0.237
aug-cc-pVQZ 53.457 28.646 31.783 23.401 37.462 -0.237

The description of the effect of the environment on the molecular system is an ex-

tremely difficult task. Usually this is achieved within combined QM/MM formalism,

which requires inclusion of the correlation effects for the quantum region as well as

description of interaction between QM and MM parts. The QM/MM formalism has

been implemented using CC theory by Christiansen and coworkers [23, 56, 57, 58]

including linear response functions, and two of the authors [24] which included a

temperature dependent formalism for calculating excitation energies. The QM/MM

Hamiltonian used in this work,

H = HQM + HQM/MM + HMM (10.8)

is optimized including static charges, but the complete linear response function of

Christiansen and coworkers [22] has not been used because the QM charge density

response is not included (column four in Table I. of Ref. [23]). In the absence of

this term, a simple way to increase the accuracy of this approach is to include the

first solvation shell within the QM part of the calculation. While this computationally

expensive, it is likely to be as accurate, if not more so, than treating the first solvation

shell using polarizable force fields with more terms in the response function.
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Our system was composed of a Cl2O embedded in a cubic box in 215 CCl4

molecules. The quantum region consisted of the Cl2O molecule with the rest of

the system treated at the molecular mechanics level using Amber force field param-

eters [59]. After the initial QM/MM DFT optimization of the entire system the

solvent(CCl4) was brought to equilibrium over the course of 3.8 ns QM/MM molecu-

lar dynamics simulation at constant temperature and pressure (298.15 K,1.025× 105

Pa) with 15 Å cutoff. During this dynamical run the QM region was represented by

a set of fixed effective charges. These were updated approximately every 0.5 ns by

means of QM/MM electrostatic potential fitting using DFT/B3LYP level of theory

and POL1 basis set [54]. After the solvent equilibration, the entire system was opti-

mized once more using multi-region QM/MM optimization at DFT/B3LYP level of

theory. This gave rise to a final structure for the QM/MM coupled-cluster property

calculations. Two types of calculations were performed to asses the influence of the

solvent. The first one ignored the presence of solvent altogether (gas phase), and the

second included all the solvent charges on the system (a total of 1075) using the same

geometry structure of the Cl2O molecule.

10.4 Results

This section is divided into two parts: the first part deals with the effectiveness of

AES in calculating molecular properties in the gas-phase using various basis sets,

the second part reports the results of our combined CC/MM formalism. Since the

Cl2O has recently attracted a considerable amount of attention and was a subject

of experimental studies in the the CCl4 solution [53] we think it is worthwhile to

use our combined CC/MM formalism to model the experimental conditions and es-
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timate the effect of the surrounding environment on the dipole moments and static

polarizabilities of Cl2O molecule.

Table 10.2 summarizes our calculations for dipole moments, static polarizabilities,

polarizability anisotropy (∆α), and average polarizability (ᾱ). One can notice that

the POL1 results, which was specially designed for molecular properties, are very

close to the results obtained with the aug-cc-pVQZ basis set, although the aug-cc-

pVQZ basis set is almost three times bigger than the POL1 basis set. For example,

the absolute values of discrepancies between POL1 and aug-cc-pVQZ basis set results

amount to 0.254, 0.521, and 0.319 a.u. for αXX , αY Y , and αZZ , respectively. The

agreement between predicted dipole values is much better. The POL1 and aug-cc-

pVQZ differ by only 0.009 a.u. At the same time the differences between the aug-cc-

pVDZ (the dimension of the aug-cc-pVDZ basis set (83) is roughly the same as the the

dimension of the POL1 basis set (94)) are much larger. The 1.644 a.u. of difference

for αY Y calculated in aug-cc-pVDZ and aug-cc-pVQZ once again emphasizes the

efficiency of the POL1 basis set in describing molecular properties.

The efficiency of the AES can be easily evaluated by analyzing Table 10.3 that

summarizes different extrapolation schemes. At the very core of the AES lies the

reduction of the overall numerical cost by using possibly small values of the τ param-

eter. At the same time chosen τ values (or sample points) should be big enough to

guarantee the proper asymptotic behaviour of the τ -dependet properties. Sometimes

the simultaneous fulfilment of these two conflicting needs may be quite a challenging

task. In our studies we used the following values of τ : τ1 = 1.5, τ2 = 2.0, τ3 = 2.5,

τ4 = 3.0, τ = 3.5, and τ = 4.0. For each point the overall cost of the CCSD properties

calculations is significantly reduced compared to the full CCSD counterpart. To be

more specific, for τ1 = 1.5 only 87 virtual orbitals are correlated, which results in
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about 140-fold speed-up of the CCSD calculations (total number of virtual orbitals

is equal to 298), whereas for τ6 = 4.0, 158 virtual orbitals are used in calculations

resulting in almost 13-fold speed-up of the CCSD part. Also the choice of the trial

function used for extrapolation plays a critical role. We used two, probably the most

rudimentary forms of the trail functions: f1(τ) = x1 +
x2
τ and f1(τ) = x1 +

x2
τ +

x3
τ2

that reflect the asymptotic, 1
τ behaviour of the τ -expansion. In order to explore the

impact of low values of τ parameter we decided to employ two sets of τ points. The

first set (A) is composed of [τ2, τ3, τ4, τ5, τ6] while the second set (B) contains all six

τ values, i.e., [τ1, τ2, τ3, τ4, τ5, τ6] including τ1. These choices of the sample points

are also consistent with our general observation that contrary to the valence excited

states case, [41] in order to get reliable results for molecular properties one has to

apply the AES to the sequence of single point calculations corresponding to larger

values of the τ parameter. This poorer convergence properties of the AES may be a

consequence of the fact that the observables involved in property calculations, such

as dipole moments are not directly related to the energy differences, which in turn

may lead to slower convergence of corresponding 1
τ -expansion.

The results of the f1(τ) and f2(τ) extrapolations based on (A) and (B) sets

of sample points (defining the f1(τ)(A), f1(τ)(B), f2(τ)(A), f2(τ)(B) schemes) are

collected in Table 10.3. Of all approaches shown in this table, the performance of

the f2(τ)(B) seems to be the most accurate regarding the achieved accuracies for

the polarizabilities. For example, the f2(τ)(B) absolute errors with respect to the

full CCSD results amount to 0.416, 0.043, and 0.158 a.u. for αXX , αY Y , and αZZ ,

respectively. By going from the f2(τ)(B) scheme to the f2(τ)(A) one can clearly

demonstrate the importance of the sampling of small τ values in situations when

the maximum value of the τ parameter (in our case this is the τ6 = 4.0 point)
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still provides significant reduction of the full CCSD cost. The f2(τ)(A) errors are

considerably bigger than the f2(τ)(B) ones and equal 0.795, 1.106, and 0.790 a.u. for

αXX , αY Y , and αZZ , respectively. None of the f1(τ) schemes cannot compete with

the f2(τ)(B) version regarding accuracies for static polarizabilities. The situation is

slightly different for dipole moment, which seems to be the best described by the

f1(τ)(A), f1(τ)(B) variants despite of the irregular behaviour of the CCSD dipole

moment as a function of τ parameter. The corresponding errors with respect to the

full CCSD calculations of 0.001 and 0.009 a.u. respectively. While the polarizabilities

values vary monotonically for τ ≥ 3.0 (which may be the first indication of working

in the 1
τ regime for polarizabilities) the same is not true for dipole moments which

reveal oscillatory behaviour in the [τ3, τ4, τ5] interval. For this reason larger values of

τ need to be used in order to get more reliable picture. Yet another issue concerns

level of theory employed. While in the excited-state calculations the EOM-CCSD

excitation energies supplemented with the non-iterative corrections due to triples

were the subject of the extrapolation procedures, in the present studies all quantities

of interest were obtained on the singles and doubles elvel. Summarizing this part of

discussion one should conclude that there is possible to obtain reliable AES results

for molecular properties provided that the set of sample points is correctly defined

until undesired oscillatory behavior of a given property is eliminated.

As seen from Table 10.4 the effect of the environment is estimated to be rather

small. The most prone to external perturbation seems to be the αXX component of

polarizability tensor (for simplicity we brought the polarizability tensor to diagonal

form). While the corresponding difference between gas-phase (using solution struc-

ture) and solution values of αXX amounts to 0.134 a.u., the remaining differences

for αY Y and αZZ are significantly smaller and are equal to 0.062 and 0.006 a.u.,
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Table 10.4: The CCSD polarizabilities (αXX , αY Y , αZZ), average polarizabilities
(ᾱ), and polarizability anisotropy (∆α) obtained for solution and the gas-phase using
POL1 basis set. In all calculations all core electrons were kept frozen and cartesian
representation of d orbitals was employed (see text for details). ∆-rows correspond
to differences between gas-phase and solution values of corresponding quantities.

environment (geometry) αXX αY Y αZZ ᾱ ∆α
solution 55.497 29.247 32.351 39.065 24.785

vacuum (vacuum) 55.705 29.314 32.371 39.130 25.003
vacuum (solution) 55.631 29.309 32.357 39.099 24.939

∆(vacuum) 0.208 0.067 0.020 0.065 0.218
∆(solution) 0.134 0.062 0.006 0.034 0.154

respectively. For ᾱ and ∆α the shifts are on the order of 0.03 and 0.15 a.u. It is also

interesting to analyze the results obtained for the true gas structure. One can imme-

diately see that these results are invariably above the solution structure ones, which is

best reflected by comparing the ∆(gas.struct.) and ∆(sol.struct.) discrepancies. For

example, the αXX component of polarizability tensor reveal the most visible effect

due to geometry relaxation on the order of 0.074 a.u. (estimated as a difference be-

tween corresponding ∆(gas.struct.) and ∆(sol.struct.)). Since the correlation effects

for the ground state are are rather mild we do not expect triply excited clusters to

change these values significantly.

10.5 Conclusions

The effect of CCl4 solvent on the dipole polarizability of Cl2O has been computed

using a QM/MM approach. It was found that the solvent effects were very small and

are less than the basis set dependence of the polarizability. Hence, it would seem that

the application of QM/MM to this problem was not necessary and that other factors
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Figure 10.1: Schematic representation of the Cl2O molecule in CCl4 solution.
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require a more thorough treatment before introducing solvent effects. There are two

possibilities to consider: (1) solvent is not important or (2) the QM/MM treatment

we chose to use was insufficient to capture the solvent effects happening.

First, it is unlikely that solvent effects in the system under investigation are sig-

nificantly larger than reported. Tetrachloromethane is a highly-polarizable non-polar

solvent whereas oxygen dichloride is less polarizable and has a dipole moment of ap-

proximately 0.8 debye (for comparison, water has a dipole moment of ∼1.85 debye). A

physical principle which frequently leads to enhanced polarization is charge-transfer

(CT); in this instance, solvent stabilization or destabilization of the CT state can

change the polarizability greatly. This effect is not occurring to any significant de-

gree in our system due to the size and bonding character of oxygen dichloride.

The second issue of whether the QM/MM treatment employed is sufficient for this

system is less easily answered. The QM/MM methodology implemented in NWChem

is such that the electrostatic interactions between the QM and MM regions of the

system are treated at the SCF level. The MM region manifests itself as a collection of

point charges surrounding the QM region which perturb the molecular integrals used

in the SCF iterations. The orbitals resulting from the SCF procedure are the only

means by which the MM region affects the calculation. The CC procedure does not

see any partial charges directly, rather it is merely using the orbitals and electron-

integrals which know about the partial charges. Another effect which is missing is

the polarizability of the solvent itself, since the force field used is a non-polarizable

one. The response function used in this work thus excludes terms which couple QM

dipoles with MM induced-dipoles as well the interactions between the MM charges

and the post-SCF QM charge density. If electron correlation changes the charge

density significantly, the latter term will be significant.
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For the chemical system considered here, there is no evidence that the terms ne-

glected from the QM/MM response function used are large. However, there are other

scenarios where such a treatment will not be sufficient. For example, nonlinear optical

properties of large chromophores with significant CT-character (i.e. para-nitroaniline,

see Chapter 9) will be problematic, as will any system solvated by water or another

polar solvent. Given the importance of solvent in nonlinear optical materials and

aqueous chemistry in general, having a QM/MM module which is capable of treating

arbitary-order couplings (arbitary-order response densities coupled to arbitrary-order

multipoles) is highly desirable. The work presented here is a first step in that direc-

tion.
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CHAPTER 11

AUTOMATIC TUNING OF MULTIDIMENSIONAL

ARRAYS KERNELS USED IN COUPLED-CLUSTER

CALCULATIONS

11.1 Introduction

Many numerical algorithms, particularly those of quantum many-body theory, rely

heavily upon procedures called tensor contractions. Tensor contractions (TC) are the

multi-dimensional generalization of matrix multiplication (MM). Whereas in MM,

one has only a single internal (contracted) index and the two external indices of the

matrix,

Ci
j =

∑

k

Ai
k Bk

j , (11.1)

a tensor contraction may have an arbitary number of both. One simple example from

quantum chemistry is

R
a,b
i,j =

∑

c,d

V
a,b
c,d T

c,d
i,j . (11.2)

While Eqn. 11.2 is isomorphic to MM upon fusion of the three pairs of indices, other

similar contractions with permuted indices are not. An example of a TC that cannot

be performed with MM alone is

R
a,b
i,j =

∑

k,c

Ṽ
k,b
c,j T

a,c
i,k , (11.3)
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presuming that we are utilizing the straightforward layout of these objects in memory.

That the objects R and T in Eqns. 11.2 and 11.3 are the same, the best one can do

is to choose a layout which is optimal for the most expensive TC and use a sub-

optimal ordering for the other. Alternatively, one can change the memory layout

sub-optimally-ordered tensors via a transpose-like operation. A much more complex

approach is to use Morton-ordering [1] (also known as Z-ordering), or more generally,

hierarchical tiling [2], to improve the performance of all tensor contractions, but then

it is not possible to use existing implementations of MM, such as BLAS.

The complexity introduced by the transposition of indices in TCs presents a sig-

nificant challenge to programmers. If one hand-codes procedures which are not MM,

then a significant performance loss is incured, as MM kernels are perhaps the most

optimized in all numerical computation. Alternatively, one can retain the use of fast

MM kernels by realigning the memory layout such that operations like Eqn. 11.3 can

be performed with MM.

The transformation of Eqn. 11.3 to a form which is consistent with matrix multi-
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plication is as follows:

T
a,c
i,k → T1(i, k, a, c) (11.4)

Ṽ
k,b
c,j → V 1(c, j, k, b) (11.5)

R
a,b
i,j → R1(i, j, a, b) (11.6)

T2(i, a, k, c) = T1(i, k, a, c) (11.7)

V 2((k, b), (c, j)) = V 1((c, j), (k, b)) (11.8)

V 3(k, c, b, j) = V 2(k, b, c, j) (11.9)

R2((i, a), (b, j)) = SUM[(k, c)] V 3((k, c), (b, j)) ∗ T2((i, a), (k, c)) (11.10)

R1(i, j, a, b) = R2(i, a, b, j) (11.11)

where the matrix dimensions used in the matrix transpose and multiplication calls are

denoted with parentheses. Row-major ordering (the last index is stride-1) is presumed

throughout. Equations 11.7, 11.9 and 11.11 correspond to tensor transpose (TT)

operations. Since matrix transpose is not a standard BLAS operation, Eqn. 11.10 will

be treated as another TT. However, when a vendor BLAS library (i.e. IBM’s ESSL)

contains a matrix transpose procedure, it should be used instead if the performance

justifies it.

For a rank-n tensor, there are n! possible permutations of the indices, and writing

fast code for each of these procedures by hand is impractical for n > 4. The automatic

generation of code for these procedures is the subject of this chapter.
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11.2 Background

The target application for this project was the coupled-cluster codes within TCE

module of the quantum chemistry package NWChem [3]. Because most of the code

within the TCE module was written by a code generator, it employs a simple structure

which is easily modified. The TCE module also has few, if any, manually optimized

procedures and thus suffers in performance with respect to the best hand-written

packages. In the particular case of TT, four subroutine calls, tce sortN (N=2,4,6,8),

were used to perform every associated array permutation. Nearly identical sort-

acculuate calls (tce sortaccN, N=2,4,6,8) have use the same code except with “+=”

instead of “=”. Replacing these procedure with faster ones would result in increased

performance throughout the code.

Is it not unreasonable to question the utility of optimizing permutations at all.

The permutation of a n-d array requires Nn floating-point operations (flops), where

N is the rank of each dimension, whereas contracting an n-d array with an m-d array

over k indices requires Nm+n−k flops. However, the number of memory operations

(mops) required to permute a 4-d array or contract two 4-d arrays over 2 indices is

C·N4 where C is 2 for permutation (1 read, 1 write) and 3 for contraction (2 reads,

1 write). On modern processors, mops are so expensive that some have said that

flops can almost be ignored. MM achieves a large percentage of machine peak by

obscuring memory latency through data reuse, which is possible because flops/mops

is large. Since the performance of permutations is entirely memory-bandwidth, it

is unreasonable to expect a large percentage of peak performance. At the same

time, improper implementation of these procedures can be extraordinarily expensive.

Unlike MM, the flow of data during permutation is necessarily not optimal since at
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least half of the mops will not be stride-1.

If we assume flops are free and that performance is determined by the number and

type of mops occuring, then permutation, not MM will be the more expensive proce-

dure of the two. Since theoretical analyses are rarely quantitative, the relative cost

of the two procedures has been measured using profiling techniques. Both the GNU

profiler gprof [4] and TAU [5] were used to profile the code to ensure correct mea-

surements. TAU profiling results are not reported as they do not differ significantly

from those of gprof.

11.3 Results

All results are for a single water molecular at the equilibrium geometry. Calculations

were performed without point-group symmetry using spherical angular functions. The

tile size for the virtual orbitals (VO) was no greater than 32. For the cc-pVDZ, cc-

pVTZ and cc-pVQZ basis sets, there were 2, 4 and 8 VO tiles with average dimension

19, 26.5 and 27.5, respectively. Using a larger tile size favors dgemm performance,

while smaller favors tce sortN.

11.3.1 Profiling of CCSD within NWChem

First it was established empirically that the tensor transpose operation is a significant

portion of the was time, as predicted by the aforementioned theoretical analysis. In

Table 11.1, the results of profiling are given for computing the CCSD ground-state

energy. When computing the CCSD energy, the coupled-cluster equations (described

in previous chapters) are solved iteratively. The energy evaluation two orders less

expensive than the iterative procedure and does not contribute significantly to the
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Table 11.1: Profile (gprof) of the NWChem TCE module CCSD code for computing
the ground-state energy.

Matrix multiplication Tensor transpose
dgemm tce sort4 & tce sortacc4

Basis Time (s) % of Total Time (s) % of Total
cc-pVDZ 0.40 27.59 1.49 29.65
cc-pVTZ 8.70 30.87 34.15 37.22
cc-pVQZ 154.46 38.54 108.47 27.07

computational cost. The data given in Table 11.1 shows that MM and transpose

both contribute significantly to wall time. However, the fraction of the wall time

devoted to MM grows with the basis set, so it is not entirely clear that the optimality

of the transpose will matter for larger systems. It should be noted that the MM

implementation used was from NETLIB. A high-performance BLAS library such as

GotoBLAS [6] or ATLAS [7] would greatly decrease the time spent on MM operations.

As should be clear from previous chapters, computating the ground-state energy

is but one of many possible tasks for a coupled-cluster code. In Table 11.2, pro-

filing information is given for the evaluation of all steps necessary to compute the

hyperpolarizability using the method described in Chapter 8. The number of difficult

transposes required for the solution of the Λ(0), T (1) and Λ(1) equations is signifi-

cantly larger than required just for T (0), which is affirmed by the data. The relative

amount of time spend in the transpose operations is approximately 50% greater than

that spent in MM for the cc-pVQZ basis set, and while the overall trend in the basis

set is the same as Table 11.1, rate of which MM increases and transpose decrease is

much less.
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Table 11.2: Profile (gprof) of the NWChem TCE module CCSD code for computing
the hyperpolarizability.

dgemm tce sort4 & tce sortacc4
Basis Time (s) % of Total Time (s) % of Total

cc-pVDZ 5.78 28.18 11.08 54.03
cc-pVTZ 111.10 28.44 192.45 49.26
cc-pVQZ 1389.05 29.16 2137.17 44.87

11.3.2 Autotuning transpose kernels

It was determined that the primary reason transpose operations are slow is that they

access memory in a suboptimal way, that is, strided access rather than sequential

(stride-1) access. While it is not possible to eliminate strided access, it is possible

to minimize the cost of strided access by rearranging the loops such that the stride

distance is minimal. If the stride distance is small enough that cache reuse occurs, a

significant performance increase will result.

While it is possible to determine optimal loop ordering using mathematical anal-

ysis, a much cruder approach — exhaustive sampling — is sufficient in this case.

In addition, sampling includes all possible hardware-specific factors which may not

be available for integration into a performance modeling used in the analytic ap-

proach. To determine the optimal loop-ordering for the 4-d transpose problem, a

code-generator was developed which would produce source code for all possible im-

plementations (24) for each of the 24 transposes, for a total of 576 cases. Source

code was generated in both Fortran 77 and ANSI C since the former is known to

be more amenable to compiler optimization, while the latter allows a more complete

set of compiler pragmas and is the language of choice of people who would further

hand-tune these kernels. A master program was instrumented to compile the source
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code into binary form using a variety of possible compiler flags to determine the effect

of available optimization options. Some of the optimizations sampled for the Intel

compilers were loop-unrolling, auto-vectorization and auto-parallelization; compiler

pragmas were also explored as a means to explicitly control unrolling and vectoriza-

tion. The master program built a self-contained binary for each possible transpose

which, when executed, performed the timing and printed a complete table of results

then identified the optimal loop-ordering. It also prints the compiler flags which were

used to generate the code to prevent data rot.

Table 11.3 shows the best improvement obtained with the automatically-generated

code as compared to the original implementation within NWChem by So Hirata. Four

cases were considered: regular 4-d arrays of rank 20, 32 and 60 plus an irregular array.

The speed-up for the rank 20 case is significantly better than the others because both

the input and output array (1,250 KB each) fit into cache on the machine tested

(Intel Core2Duo, 4 MB L3 cache). For larger dimensions, the arrays do not fit into

cache. This clearly indicates that L3 cache-blocking will significantly improve the

transpose performance, although finding the optimal code with that additional level

of complexity becomes harder. Instead of performing an exhaustive search over just

the space of loop-orderings or compiler options, an exhaustive search for the cache-

blocking case involves exploring the tensor product space of blocking sizes and loop-

orderings for each level of blocking. The dimensionality here is too large to consider

by brute force, and a space-pruning algorithm must be employed to make the solution

achievable in a reasonable amount of time.

In addition to the 4-d case, exhaustive search was used to find the best implementa-

tion of the subset of 6-d transpose-accumulate operations used in CCSD(T). Because

of memory constraints imposed by the use triple-excitation amplitudes, dimensions
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Table 11.3: Best improvement relative to the original implementation by the ANSI
C automatically-generated implementation of the transpose operations for a 4-d ar-
ray. The Intel 10.1 compiler flags used were -O3 -xT -march=core2 -mtune=core2

-funroll-loops -align.

Transpose 204 324 604 irregular
1234 7.250 2.500 1.946 3.769
1243 7.667 2.345 2.257 2.733
1324 5.000 1.828 1.861 2.667
1342 5.250 2.379 2.173 2.923
1423 7.000 2.448 2.272 2.929
1432 5.250 2.000 2.372 3.154
2134 5.250 2.000 1.967 2.583
2143 8.334 2.586 2.108 2.786
2314 5.250 2.000 2.028 2.583
2341 5.000 2.267 2.179 3.000
2413 7.000 2.571 2.390 2.857
2431 5.000 1.889 2.756 3.385
3124 5.250 1.862 1.966 2.538
3142 5.000 3.233 2.216 3.000
3214 5.250 2.143 2.104 2.833
3241 7.000 1.971 2.219 2.571
3412 5.000 1.838 2.208 2.692
3421 6.334 1.976 2.281 2.429
4123 6.333 2.655 2.228 2.875
4132 4.750 1.944 2.202 3.000
4213 5.250 2.821 2.326 2.786
4231 5.250 2.195 2.299 3.077
4312 4.750 1.973 2.120 3.308
4321 4.500 1.767 2.163 3.077

irregular = 41 × 17 × 24 × 39
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of the arrays are much smaller. Due to the smaller stride length, cache-blocking is

less important and the performance improvement realized just by finding the optimal

loop-ordering (among 6! = 720 possibilities) is quite good. The performance improve-

ment realized in preliminary attempts ranges from a factor of 3 to a factor of 12. This

is the subject of ongoing research.

11.4 Conclusions

Tensor operations, which compose the overwhelming majority of quantum chemistry

codes, require optimal implementations to take advantage of high-performance com-

puters. It was demonstrated that tensors transpose is a significant contribution to the

wall time for coupled-cluster calculations and that a very simple approach decrease

the time devoted to these operations by a factor of two. The successful approach

employed here did not employ cache-blocking or many other possible optimization

techniques which will further improve the performance

Ultimately, this project demonstrates that the artificial seperation of transpose

and MM in the implementation of tensor contractions is wholly inappropriate. The

original motivation for it was to take advantage of vendor-optimized BLAS libraries,

but developments in autotuning over the past 10 years clearly indicate that it is

possible to generate tensor contraction kernels directly. The advantage is not only

with respect to performance, but also in terms of mathematical elegance. The many-

body formalism of coupled-cluster theory is multidimensional and flattening the data

structures used in such codes into matrices just to use BLAS should not be tolerated.
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CHAPTER 12

CONCLUSIONS

In the previous chapters, a number of applications of coupled-cluster (CC) response

theory were presented. These are briefly reviewed here and the overarching themes

are highlighted.

In Chapters 3 and 4, the role of electron correlation and basis set were evaluated

for the polarizabilities of aromatic hydrocarbons ranging from benzene to C60. For

benzene, a relatively modest level of theory — CCSD/aug-cc-pVTZ — was found

to reproduce the experimental dynamic polarizability. Exhaustive calibration of the

basis set and use of the approximate triples model CC3 validate that this result is

“the right answer for the right reason.”1 Based upon the benchmarking of benzene,

the CCSD/Sadlej pVTZ model was applied to larger polyacenes and those results

compared to DFT. Errors associated with approximate DFT exchange were quantified

and explained. Finally, the CCSD approximation in conjunction with a compact but

appropriate basis set was applied to the C60 fullerene. The CC2 model was found to

be inadequate but some DFT methods produced results close to CCSD, which was

nearly within the experimental error bars.

One motivation for studying aromatic hydrocarbons is many types of nanostruc-

tures have similar chemical properties. Realistic nanostructures cannot be modeled

with high-level quantum chemical models but by systematically benchmarking smaller

systems, it should be possible to understand what low-level models are appropriate

1This quote is frequently attributed to Ernest Davidson.
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and how they can be improved. In the case of nanographene and larger fullerenes,

the results for polyacenes demonstrate that the role of exchange must be considered

carefully. In the polyacene study, PBE0 was the best exchange-correlation functional

considered, although the scope of comparative study for DFT was somewhat limited.

The study of water clusters in Chapter 5 was based upon a hierarchy of mod-

els; high-level calculations were performed on the monomer and small clusters, while

larger systems were treated using the most accurate model possible, CCSD/aug-cc-

pVDZ. The basis set dependence seen for water clusters was similar to aromatic

hydrocarbons: aug-cc-pVDZ and Sadlej pVTZ are excellent basis sets for the com-

putational cost, while Pople basis sets should not be used for polarizabilities. Where

computations were feasible, higher-order correlations in water clusters were found to

be non-negligible but also small enough that the use of CCSD for large systems was

justified. Of all the DFT approximations considered, PBE0 was the best, having

reproduced CCSD quite effectively for polarizabilities and out-performed all other

functionals for reproducing CCSD(T) binding energies. However, the most surprising

result was that MP2 reproduced CCSD(T) binding energies almost perfectly, which

has significant consequences for many aspects of computational modeling of water.

The full scope of these is not yet known but will the subject of future research.

A far more exhaustive study of computational models for determining polarizabil-

ities was the subject of Chapter 6. Using the CCSDT model and very large basis

sets, it was shown that the experimental polarizability could be reproduced to the

available precision. While neon is a very simple system, this result is one affirmation

of the underlying hypothesis of quantum chemistry: computation can reproduce ex-

periment when the space of modeling approximations can be exhausted. The second

key result of Chapter 6 was that spin-contamination introduced by a UHF reference
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can falsely present itself as higher-order correlation. While it is not always necessary

(see the case of NO) a spin-pure reference is strongly recommended for computing

polarizabilities.

For polarizability computations, two important conclusions emerged: (1) satu-

rating the basis set with CCSD is more useful than higher-order CC methods with

limited basis sets, and (2) larger systems (Natom & 10) display less basis set depen-

dence than small molecules (Natom . 3). Chapter 9 was an important test of the

generality of these conclusions since hyperpolarizabilies should have more basis set

dependence and require a higher-level correlation treatment than polarizabilities. The

importance of basis set saturation for small molecules was affirmed for HF and H2O

in the hyperpolarizability study. For PNA, basis set effects were similar to benzene,

such that double- and triple-zeta basis sets appear to be sufficiently converged such

that further saturation is not necessary until other effects are adequately addressed.

Further study is required to understand higher-order correlation, particularly since

these effects will be more important for dynamic hyperpolarizabilities, which were

not considered.

For numerous examples presented in previous chapters, the modeling approach

which combines a hierarchy of correlation models based upon the CC ansatz with

the hierarchy of correlation-consistent basis sets developed by Dunning is found to

systematically converge to experimentally-determined electric-field properties. That

is this approach can now be employed for much larger chemical systems due its parallel

implementation within a freely-available software package opens the door for synergy

between theory and experiment over a much larger set of problems.
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FINAL THOUGHTS

This thesis describes the kind of progress in computational chemistry that can be

made when the numerical methods of interest are implemented on supercomputers.

Despite advancing the capability of certain quantum chemical methods by at least

an order of magnitude, the pace at which computer technology moves provides no

opportunity to relish this progress.

In 2003, the fastest computer in world was Earth Simulator in Japan, which

was LINPACK-rated at 35.9 teraflops/s, twice that of the second-fastest computer,

ASCI Q at Los Alamos National Laboratory. Earth Simulator was displaced from

the top spot on the Top500 list [1] by the 71 teraflops/s BlueGene/L at Lawrence

Livermore National Laboratory in the fall of 2004. Despite increasing its performance

to 596 teraflops/s, BlueGene/L was replaced at the top in the summer of 2008 when

Roadrunner at Los Alamos National Laboratory broke the petaflops/s barrier with a

LINPACK rating of 1026 teraflops/s. As of November 2008, Earth Simulator is only

the 73rd fastest computer in the world and it is arguably the least economical, as it

uses over 3 megawatts of electricity, more than all but one other computer on the

Top500 list. An even more striking historical comparison is that the fastest computer

in the world in 1999, the 2 teraflops/s ASCI Red at Sandia National Laboratory,

is rivaled in performance by desktop workstation equipped with two state-of-the-art

video cards.

What does this have to do with chemistry? Ground-breaking theoretical advances
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(i.e. Jarzynski Inequality [2]) are truly rare but the scope of precise experimental

techniques is growing rapidly. Experimental techniques once applied only to small

molecules are now used to study complex quantum phenomena in biological sys-

tems of tremendous complexity. In order for the synergy between theory (including

computation) and experiment to continue, computational chemistry must be able to

take advantage of the exponential growth in computing power which has been oc-

curring since the dawn of the computer age. Due to the polynomial but nonlinear

cost of accurate quantum chemical methods, even a linear increase in experimentally-

treatable systems leads to a hopeless situation in which simulation of experiments

takes an ever-increasing amount of time to simulate the same observable quantities.

Massively-parallel algorithms effectively turn a supercomputer into a time machine.

A petaflops/s computer performs nearly one million times as many operations as a

desktop computer over the same period of time. Hence, a simulation which would

have otherwise taken 1000 years takes only a day or two if a good parallel algorithm

exists.

Assuming the exponential growth in computing power continues, the fastest com-

puter in the world will run at one exaflops/s around my 40th birthday (2021). A

parallel trend in commodity computing means that at that time, every scientist will

have their own petaflops/s computer, that is, a computer as capable as the two most

powerful supercomputers on earth in 2009. All areas of chemistry will be transformed

by this level of computing power. State-of-the-art simulations today provide accuracy

equal to (and occasionally greater than) experiment for small molecule thermochem-

istry as well as many electric-field properties. Physical phenomena not directly acces-

sible via accurate experimental techniques can be elucidated by simulation, although

widespread application of the necessary methods is not possible due insufficient com-
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puter time. The process by which the state-of-the-art techniques of today become

the college homework problems of 20 years from now will transform the chemical sci-

ences by providing every laboratory chemist with a computational resource capable

of resolving difficult spectra and revealing mechanisms not observable in a test tube.

The transformational impact of ever more powerful computers is not limited to

physical chemistry. The same software technology [3] that enabled my coupled-cluster

property code also powers a massively-parallel genome-sequencing code [4], despite

having very different algorithmic characteristics. While such examples might still

seem like the exception rather than the rule, thinking of parallel computation is a

special case is completely backwards. In 2009 in the United States, it is effectively

impossible to purchase a computer which is not parallel (i.e., serial). Every new com-

puter and video game console runs a multicore processor while standard appliances

and automobiles contain processors with significant performance [5, 6]. Multicore

processors for cell phones will soon be the norm [7]. Each American possesses in

their home enough computing power to solve non-trivial scientific problems. This

capability has already been exploited by projects such as SETI [8], BOINC [9], Fold-

ing@Home [10] and Einstein@Home [11], which exploit massive arrays of personal

computers to solve scientific problems amenable to loosely-coupled parallelism.

As computing power grows in individual machines, and while these simultane-

ously become more connected, the opportunity to solve important scientific problems

increases, but only if scientific algorithms advance as well. It would be tragic if con-

sumer computing technology of the future is still used primarily for social networking

and games. While photorealistic video games or Facebook with real-time-video may

excite some, the electrical power consumption of such uses of computers can hardly

be justified. By most standards, video games and social networking have no lasting
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value, while the environmental consequences of electrical power generation by cur-

rent technology last hundreds of years. In contrast, sequencing ones own genome and

searching for genetic indicators of serious diseases using an idle video game console

would be a good use of such computing resources since the moral value of preserving

human life is not widely disputed. In the event that a disease indicator is discovered,

ones laptop, personal digital assistant or cell phone1 could embark upon a quest to

find a high-efficacy, low-toxicity pharmaceutical compound to disable the relevant

protein binding site [12].

My vision for the future may seem far-fetched, or at least unrelated to my thesis.

However, my linear response property code has already been applied to one aspect of

the drug design problem [13] and I began porting NWChem for graphics processors

earlier this year. It is my hope that future students in the field of computational

science will be just as likely to perform their research with a parent’s cell phone or

sibling’s video game console accessed remotely as it is for them to employ government-

owned supercomputers.

The central goal of thesis was to push the frontier of accurate quantum chemi-

cal simulation of molecular properties in multiple directions (accuracy, molecule size,

time-to-solution) using state-of-the-art supercomputers. In addition to the immedi-

ate impact of the chemical data produced, the way in which the data was generated

demonstrates facets of two relatively new paradigms in computational chemistry —

massive parallelism and automatic code generation — which must soon become nor-

mative if chemists are to realize the next-generation of computer technology.

1It is unlikely they will be distinct for much longer.
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APPENDIX A

SUPPLEMENTAL INFORMATION FOR CHAPTER 6

Most of this numerical data corresponds to the figures in Chapter 6. Additional

benchmark results are included for posterity. See Chapter 6 for details.
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Table A.1: Complete data for Ne. The frequency is given in Hartrees at the top of each column.

CCSD CC3 CCSDT
Basis 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

aug-cc-pVDZ 2.003 2.020 2.077 2.187 1.981 1.998 2.053 2.158 1.983 2.000 2.055 2.161
aug-cc-pVTZ 2.433 2.454 2.525 2.661 2.421 2.443 2.512 2.647 2.423 2.445 2.515 2.650
aug-cc-pVQZ 2.598 2.623 2.704 2.860 2.594 2.619 2.700 2.856 2.595 2.621 2.702 2.858
aug-cc-pV5Z 2.643 2.670 2.757 2.927 2.643 2.671 2.758 2.928 2.644 2.671 2.759 2.930

d-aug-cc-pVDZ 2.705 2.735 2.830 3.018 2.676 2.705 2.798 2.978 2.679 2.708 2.801 2.982
d-aug-cc-pVTZ 2.697 2.727 2.823 3.011 2.691 2.721 2.816 3.003 2.693 2.722 2.818 3.006
d-aug-cc-pVQZ 2.679 2.709 2.803 2.989 2.680 2.709 2.804 2.989 2.680 2.710 2.805 2.991
d-aug-cc-pV5Z 2.667 2.696 2.790 2.974 2.670 2.699 2.793 2.978 2.670 2.699 2.794 2.979
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Table A.2: Complete data for HF.

CCSD CC3 CCSDT
Basis Frequency (a.u.) α⊥ α‖ α⊥ α‖ α⊥ α‖

aug-cc-pVDZ

0.0 4.339 6.283 4.293 6.220 4.296 6.225
0.1 4.442 6.407 4.392 6.343 4.397 6.348
0.2 4.833 6.827 4.770 6.755 4.776 6.762
0.3 6.188 7.732 6.032 7.642 6.053 7.653

aug-cc-pVTZ

0.0 4.901 6.353 4.890 6.328 4.892 6.331
0.1 5.010 6.479 4.999 6.454 5.002 6.458
0.2 5.414 6.904 5.402 6.879 5.407 6.884
0.3 6.689 7.819 6.667 7.795 6.686 7.804

aug-cc-pVQZ

0.0 5.080 6.341 5.088 6.329 5.088 6.332
0.1 5.195 6.467 5.204 6.456 5.204 6.459
0.2 5.615 6.889 5.628 6.882 5.630 6.886
0.3 6.884 7.796 6.911 7.798 6.926 7.805

aug-cc-pV5Z

0.0 5.121 6.329 - - - -
0.1 5.239 6.455 - - - -
0.2 5.669 6.876 - - - -
0.3 6.951 7.779 - - - -

d-aug-cc-pVDZ

0.0 5.288 6.456 5.234 6.396 5.237 6.400
0.1 5.421 6.588 5.363 6.525 5.366 6.530
0.2 5.913 7.030 5.838 6.959 5.844 6.966
0.3 7.478 7.983 7.308 7.895 7.329 7.906

d-aug-cc-pVTZ

0.0 5.255 6.401 5.255 6.378 5.255 6.381
0.1 5.384 6.530 5.385 6.508 5.385 6.511
0.2 5.860 6.965 5.861 6.943 5.863 6.948
0.3 7.312 7.903 7.307 7.884 7.323 7.892

d-aug-cc-pVQZ

0.0 5.197 6.356 5.211 6.344 5.210 6.347
0.1 5.322 6.483 5.338 6.472 5.337 6.475
0.2 5.782 6.909 5.803 6.902 5.803 6.906
0.3 7.157 7.827 7.194 7.829 7.208 7.836

d-aug-cc-pV5Z

0.0 5.171 6.335 - - - -
0.1 5.295 6.461 - - - -
0.2 5.747 6.884 - - - -
0.3 7.092 7.794 - - - -
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Table A.3: Complete data for N2.

CCSD CC3 CCSDT
Basis ω (a.u.) α⊥ α‖ α⊥ α‖ α⊥ α‖

aug-cc-pVDZ

0.0 10.003 14.610 10.065 14.910 10.050 14.814
0.1 10.236 15.004 10.304 15.341 10.293 15.237
0.2 11.043 16.370 11.132 16.848 11.125 16.711
0.3 12.933 19.568 13.090 20.448 13.097 20.224
0.4 18.528 28.957 19.085 31.552 19.243 31.020

aug-cc-pVTZ

0.0 10.126 14.578 10.213 14.860 10.187 14.753
0.1 10.365 14.965 10.460 15.286 10.434 15.169
0.2 11.189 16.302 11.315 16.768 11.289 16.612
0.3 13.089 19.390 13.317 20.279 13.295 20.012
0.4 18.563 28.141 19.355 30.854 19.434 30.1507

aug-cc-pVQZ

0.0 10.108 14.541 10.2008 14.823 10.179 14.714
0.1 10.349 14.926 10.459 15.248 10.430 15.128
0.2 11.180 16.256 11.328 16.728 11.297 16.566
0.3 13.101 19.320 13.366 20.223 13.337 19.956
0.4 18.619 27.917 19.529 30.694 19.581 29.961

d-aug-cc-pVDZ

0.0 10.192 14.740 10.274 15.039 10.257 14.944
0.1 10.440 15.138 10.530 15.475 10.513 15.370
0.2 11.300 16.515 11.419 16.993 11.403 16.855
0.3 13.322 19.724 13.532 20.607 13.526 20.378
0.4 19.508 29.229 20.268 31.873 20.390 31.324

d-aug-cc-pVTZ

0.0 10.153 14.604 10.246 14.888 10.219 14.781
0.1 10.397 14.994 10.499 15.316 10.471 15.199
0.2 11.238 16.337 11.376 16.807 11.346 16.650
0.3 13.193 19.442 13.443 20.336 13.416 20.067
0.4 18.957 28.282 19.868 31.029 19.920 30.328

d-aug-cc-pVQZ

0.0 10.481 15.831 10.109 14.548 - -
0.1 10.694 16.221 10.351 14.935 - -
0.2 11.409 17.556 11.185 16.266 - -
0.3 12.970 20.553 13.118 19.336 - -
0.4 16.877 28.179 18.750 27.969 - -
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Table A.4: Complete data for CO (frozen core).

CCSD CC3 CCSDT
Basis ω (a.u.) α⊥ α‖ α⊥ α‖ α⊥ α‖

aug-cc-pVDZ

0.000 11.618 15.820 11.685 15.575 11.663 15.642
0.100 12.100 16.342 12.194 16.101 12.168 16.169
0.200 14.169 18.219 14.423 18.006 14.371 18.079
0.300 32.238 23.164 38.041 23.151 37.489 23.219

aug-cc-pVTZ

0.000 11.825 15.712 11.895 15.506 11.865 15.569
0.100 12.320 16.224 12.417 16.027 12.380 16.091
0.200 14.443 18.059 14.700 17.904 14.631 17.970
0.300 35.318 22.807 43.023 22.890 41.944 22.940

aug-cc-pVQZ

0.000 11.832 15.639 11.908 15.444 11.877 15.509
0.100 12.330 16.148 - - 12.396 16.028
0.200 14.468 17.967 - - - -
0.300 35.959 22.650 - - - -

aug-cc-pV5Z
0.000 11.819 15.604 - - - -
0.072 12.068 15.861 - - - -

d-aug-cc-pVDZ

0.000 11.913 15.907 11.980 15.668 11.959 15.734
0.100 12.415 16.435 12.509 16.201 12.483 16.268
0.200 14.555 18.334 14.810 18.129 14.759 18.201
0.300 33.072 23.333 39.112 23.337 - -

d-aug-cc-pVTZ

0.000 11.877 15.718 11.951 15.516 11.919 15.579
0.100 12.377 16.234 - - 12.441 16.104
0.200 14.523 18.078 - - 14.717 17.992
0.300 35.661 22.850 - - - -

d-aug-cc-pVQZ

0.000 11.838 15.634 - - - -
0.100 12.338 16.143 - - - -
0.200 14.482 17.964 - - - -
0.300 36.078 22.651 - - - -

d-aug-cc-pV5Z
0.000 11.823 15.604 - - - -
0.072 12.072 15.861 - - - -
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Table A.5: Complete data for CN (frozen core).

ROHF Reference UHF Reference
CCSD CCSDT CCSD CCSDT

ω (a.u.) α⊥ α‖ α⊥ α‖ α⊥ α‖ α⊥ α‖

d-aug-cc-pVDZ
0.00 16.319 26.398 16.304 26.349 15.878 25.587 16.211 26.267
0.01 16.472 26.458 16.448 26.412 15.982 25.637 16.346 26.329
0.02 17.017 26.641 16.957 26.605 16.335 25.789 16.821 26.520
0.03 18.377 26.963 18.207 26.944 17.118 26.056 17.965 26.852
0.04 22.851 27.449 22.128 27.460 18.994 26.454 21.364 27.358

d-aug-cc-pVTZ
0.00 16.355 26.127 16.311 26.163 15.821 25.249 16.208 26.081
0.01 16.518 26.185 16.466 26.226 15.924 25.297 16.352 26.141
0.02 17.103 26.366 17.019 26.419 16.274 25.444 16.864 26.330
0.03 18.598 26.681 18.420 26.758 17.050 25.700 - -
0.04 23.913 27.157 - 27.274 18.910 26.082 - -

d-aug-cc-pVQZ
0.00 16.305 25.963 - - 15.795 24.598 - -
0.01 16.466 26.021 - - 15.965 25.403 - -
0.02 17.043 26.197 - - 16.336 24.854 - -
0.03 18.512 26.507 - - 17.179 25.796 - -
0.04 23.653 26.973 - - 18.476 25.989 - -
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Table A.6: Complete data for NO (frozen core). When a basis set is listed instead of
a frequency, ω = 0.0 and the given basis set was employed for subsequent dynamic
calculations. The basis sets aug-cc-pVXZ and d-aug-cc-pVXZ are abbreviated aXZ
and daXZ, respectively.

ROHF Reference UHF Reference
Basis/ CCSD CCSDT CCSD CCSDT
ω (a.u.) α⊥ α‖ α⊥ α‖ α⊥ α‖ α⊥ α‖

aDZ 9.123 15.096 9.153 14.944 9.118 15.073 9.152 14.942
0.050 9.186 15.239 9.219 15.088 9.181 15.215 9.218 15.085
0.100 9.391 15.704 9.433 15.555 9.385 15.677 9.432 15.552
0.150 9.802 16.641 9.867 16.498 9.794 16.604 9.866 16.494
aTZ 9.508 15.155 9.558 15.026 9.502 15.131 9.556 15.023
0.050 9.574 15.293 9.627 15.166 9.568 15.268 - -
0.100 9.787 15.741 9.850 15.622 9.779 15.713 - -
0.150 10.206 16.633 10.296 16.532 10.196 16.595 - -
aQZ 9.600 15.174 - - - - - -
0.050 9.669 15.312 - - - - - -
0.100 9.889 15.759 - - - - - -
0.150 10.324 16.646 - - - - - -
a5Z 9.753 15.644 - - - - - -

0.072 9.919 16.054 - - - - - -
a6Z 9.609 15.172 - - - - - -

0.072 9.756 15.465 - - - - - -
daDZ 9.844 15.546 9.892 15.408 9.835 15.521 9.891 15.406
0.050 9.922 15.699 9.973 15.562 9.913 15.673 9.972 15.560
0.100 10.177 16.199 10.240 16.067 10.166 16.169 10.238 16.064
0.150 10.707 17.228 10.803 17.108 10.690 17.188 10.800 17.103
daTZ 9.707 15.319 - - 9.699 15.295 - -
0.050 9.780 15.463 - - 9.771 15.437 - -
0.100 10.016 15.929 - - 10.006 15.899 - -
0.150 10.493 16.863 - - 10.479 16.823 - -
daQZ 9.656 15.226 - - - - - -
0.050 9.727 15.367 - - - - - -
0.100 9.958 15.822 - - - - - -
0.150 10.421 16.730 - - - - - -
da5Z 9.607 15.508 - - - - - -
0.072 9.752 15.840 - - - - - -
da6Z 9.630 14.761 - - - - - -
0.072 9.783 15.049 - - - - - -
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Table A.7: Complete data for O2 (frozen core).

ROHF Reference UHF Reference
CCSD CCSDT CCSD CCSDT

Frequency α⊥ α‖ α⊥ α‖ α⊥ α‖ α⊥ α‖

aug-cc-pVDZ
0.000 7.531 15.035 7.520 15.121 7.532 15.021 7.521 15.115
0.100 7.665 15.746 7.656 15.888 7.667 15.732 7.656 15.881
0.200 8.141 18.936 8.135 19.435 8.142 18.918 8.135 19.423

aug-cc-pVTZ
0.000 8.038 15.192 8.050 15.234 8.040 15.177 8.050 15.228
0.100 8.188 15.894 8.203 15.983 8.190 15.878 8.203 15.977
0.200 8.714 19.034 8.740 19.429 8.714 19.012 8.740 19.419

aug-cc-pVQZ
0.000 8.171 15.245 8.197 15.271 - - - -
0.100 8.332 15.947 - - - - - -
0.200 8.892 19.079 - - - - - -

aug-cc-pV5Z
0.000 8.173 15.247 - - - - - -
0.100 8.336 15.950 - - - - - -
0.200 8.908 19.075 - - - - - -

aug-cc-pV6Z
0.000 8.172 15.249 - - - - - -

d-aug-cc-pVDZ
0.000 8.349 15.520 8.354 15.599 8.352 15.505 8.354 15.593
0.100 8.527 16.251 8.533 16.385 8.530 16.235 8.534 16.378
0.200 9.163 19.524 9.177 20.016 9.166 19.503 9.177 20.0003

d-aug-cc-pVTZ
0.000 8.257 15.380 8.284 15.424 8.260 15.364 8.285 15.418
0.100 8.429 16.094 8.460 16.186 8.431 16.077 8.460 16.179
0.200 9.036 19.280 9.084 19.678 9.037 19.257 9.083 19.667

d-aug-cc-pVQZ
0.000 8.216 15.296 - - - - - -
0.100 8.385 16.004 - - - - - -
0.200 8.980 19.156 - - - - - -

d-aug-cc-pV5Z
0.000 8.191 15.270 - - - - - -
0.100 8.358 15.975 - - - - - -
0.200 8.948 19.112 - - - - - -



APPENDIX B

SUPPLEMENTAL INFORMATION FOR CHAPTER 9

The following data was not included in Chapter 9 nor in the submitted version of

the corresponding journal article. It is included here for posterity. See Chapter 9 for

details.
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Table B.1: Electric properties of HF at the CCSD level using various basis sets
(spherical, frozen core). All quantities are given in atomic units.

Basis Rank µz αxx αzz βxxz βzzz β‖
Roos ANO DZ 32 0.713 4.634 6.369 2.761 15.678 12.721
Roos ANO TZ 69 0.706 5.054 6.407 1.555 11.802 8.947
aug-cc-pVDZ 32 0.703 4.339 6.283 1.706 12.144 9.333
aug-cc-pVTZ 69 0.706 4.908 6.360 2.393 11.589 9.825
aug-cc-pVQZ 126 0.709 5.094 6.355 1.972 10.501 8.667
aug-cc-pV5Z 207 0.710 5.139 6.347 1.886 10.100 8.323
aug-cc-pV6Z 316 0.711 5.158 6.343 1.870 9.952 8.215

d-aug-cc-pVDZ 45 0.701 5.288 6.457 0.687 8.632 6.004
d-aug-cc-pVTZ 94 0.705 5.263 6.409 1.520 9.771 7.687
d-aug-cc-pVQZ 167 0.709 5.212 6.369 1.581 9.774 7.761
d-aug-cc-pV5Z 268 0.710 5.190 6.352 1.601 9.794 7.797
d-aug-cc-pV6Z 401 0.711 5.181 6.346 1.607 9.785 7.800
t-aug-cc-pVDZ 58 0.702 5.306 6.444 0.783 8.931 6.298
t-aug-cc-pVTZ 119 0.705 5.261 6.418 1.695 9.857 7.948
t-aug-cc-pVQZ 208 0.709 5.211 6.371 1.676 9.790 7.886
t-aug-cc-pV5Z 329 0.710 5.189 6.353 1.628 9.786 7.825
t-aug-cc-pV6Z 486 0.711 5.181 6.346 1.616 9.785 7.810
q-aug-cc-pVDZ 71 0.702 5.307 6.440 0.825 9.033 6.410
q-aug-cc-pVTZ 144 0.705 5.261 6.419 1.716 9.825 7.955
q-aug-cc-pVQZ 249 0.709 5.211 6.372 1.652 9.807 7.867
q-aug-cc-pV5Z 390 0.710 5.189 6.353 1.619 9.798 7.822

RHF = 1.7328795 bohr
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